Developing estimates of depletion for the UK natural capital accounts

- Group of Experts on National Accounts

Publication

Aram Hawa

Senior Research Officer Natural Capital Environment Division

08 April 2024

What is depletion?

Depletion, in physical terms, is the decrease in the quantity of the stock of a natural resource that is due to extraction occurring at a level greater than that of regeneration

Degradation considers changes in the capacity of environmental assets to deliver a broad range of ecosystem services and the extent to which this capacity may be reduced through the action of economic units

Since **depletion** relates to one type of ecosystem service, it can be considered a specific form of **degradation**

Why measure it?

- SEEA account
- SNA 2025 revision
- Better "net adjusted" economic metrics (Net Domestic Product)
- Comprehensive income and wealth accounting "Beyond GDP"
- Indicators and costs in sustainability

Theory

Depletion

Depletion - physical

- Extraction, harvesting or production by human agents
- Only occurs when it is greater than population growth or regeneration (renewables)
- One of several factors that can lead to a changes in stock (reappraisals, new discoveries etc.)
- Depletion flows vs stock volumes

Depletion - monetary

Price in situ – the unit value of reserves 'in the ground':

$$Price\ in\ situ = rac{Asset\ value}{Physical\ reserves}$$

 $Monetary\ depletion = price\ in\ situ\ imes\ physical\ depletion$

Depletion therefore represents the *opportunity cost* – the income foregone by extracting now rather than in the future

Other changes in stock

Other changes in stock

- Catchall term to encompass the net effect of new discoveries, reappraisals,
 reclassifications, normal and catastrophic losses and regeneration (renewables)
- Derived due to data limitations
- Stocks can increase despite depletion

Monetary other changes in $stock = price in situ \times physical other changes in stock$

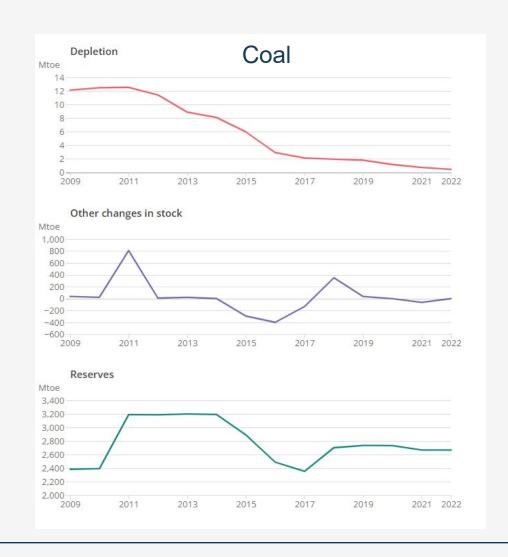
Price effect

Price effect

- Asset value can change dramatically across time even if the physical stock remains the same
- Arises due to the change in the resource rents (e.g. industry profitability)
 over time

$$\Delta V_t = (V_t - V_{t-1}) = P_{t-1} \Delta X_t + X_t \Delta P_t$$

Results



Coal

Coal

- Marked decline in coal depletion, drop of 96% since 2009
- Other changes in stock added 390 mtoe between 2009 and 2022
- Reserves increased by 12% between 2009 and 2022

No monetary estimates available

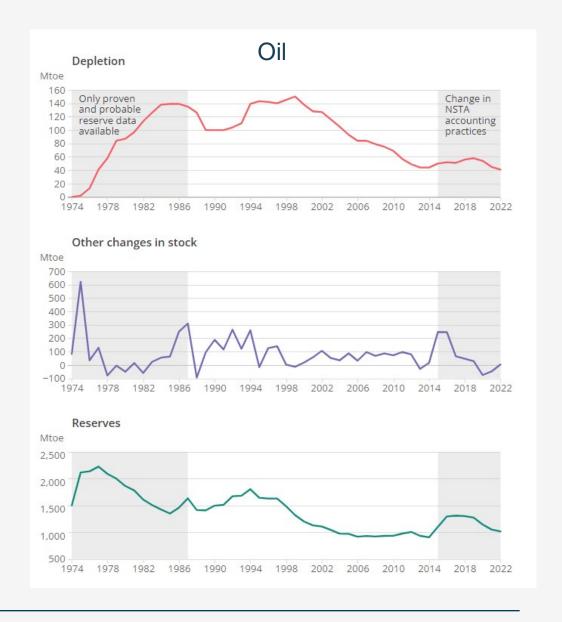


Minerals and metals

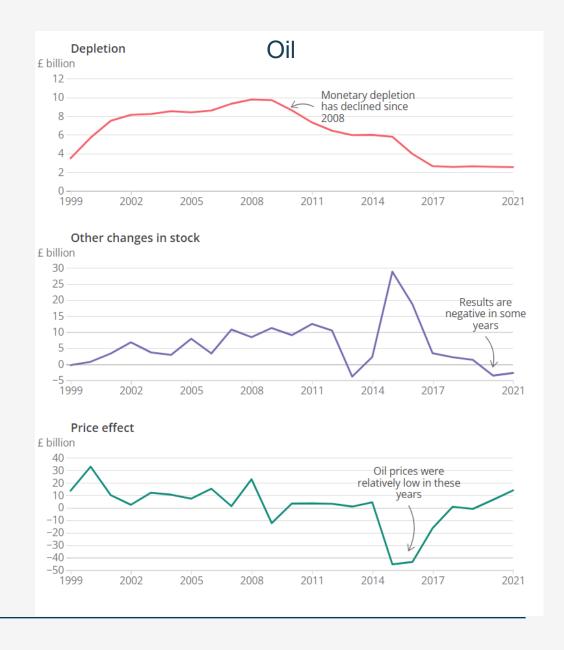
Minerals and metals

- Peak production in 2008 at 261 million tonnes
- Declined by 19% in 2009
- Ranged between 190 and 218 million tonnes between 2009 and 2021

No monetary estimates available



Oil and gas

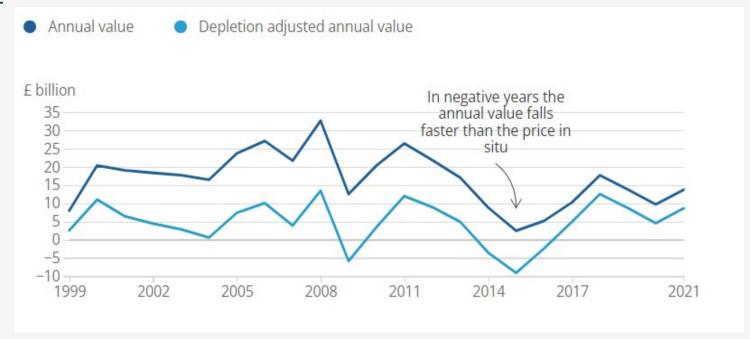

Oil - physical

- Depletion consistently above 100 mtoe between 1982 – 2004. Peaking in 1999 at 150 mtoe. Has since declined to 41 mtoe in 2022
- Other changes in stock are positive in 80% of years and added 3,967 to reserves over time series
- Depletion > other changes in stock in 61% of years, causing reserves to decline
- Reserves declined to 1,014 mtoe in 2022, a 38% reduction since 1987
- Results for gas follow a similar trend

Oil - monetary

- Depletion rose from £3.5 billion in 1999 to its peak in 2008 at £9.8 billion, before diminishing to £2.5 billion in 2021.
- Other changes in stock added £137.1 billion to the asset value over the time series.
- The price effect is volatile but positive in most years, and between 1999 and 2021, added £46.4 billion to the value of the asset.
- Positive correlation of 0.3 between physical and monetary depletion
- Results for gas follow a similar trend

Monetary depletion – Oil & gas


Three factors which explain the change in the asset value year on year. On average:

- Depletion 34%
- Other changes in stock 22%
- Price effect 44%

Monetary depletion – Oil & gas

- Depletion adjusted annual value is lower by £4.8 billion on average over time series
- Several years where results are negative
- Happens when annual value falls faster than the price in situ
- Results can also be netted off against industry gross value added and GDP

Possible future developments

Possible future developments

- More depletion for more ecosystem services
- Renewables complex models which include biological growth rates
- Degradation linking condition to declining productivity
- Whose depletion? Assigning the value of depletion out to actors (industry vs government)