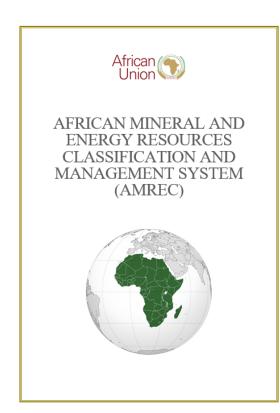
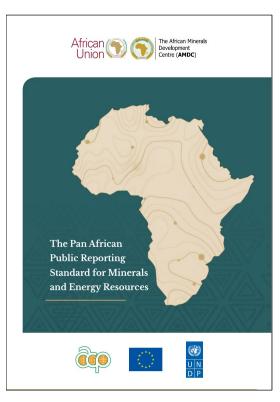
Development and deployment of UNFC – The AMREC Case Study

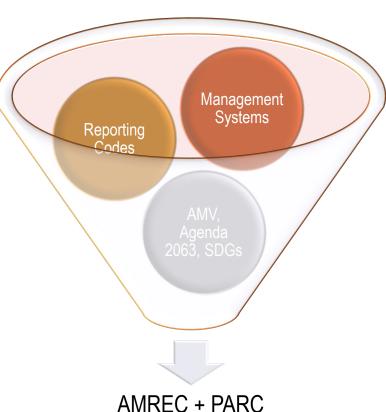
Felix Bob Ocitti

AMREC Technical Working Group

RESOURCE MANAGEMENT WEEK 2024




Outline


- 1. Introduction
- 2. How AMREC relates to UNRMS
- 3. A Generalized approach to Application of AMREC
- 4. The Case Studies

Introduction

Overview

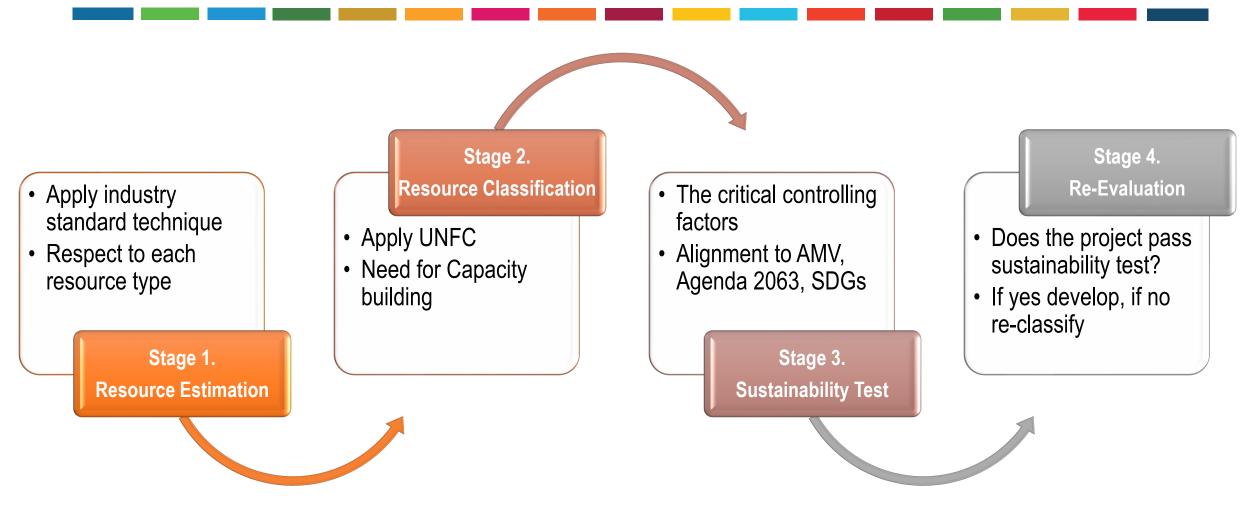
- A comprehensive system for sustainable management of Africa's minerals and energy resources.
- Aligned to Africa Mining Vision (AMV), Agenda 2063 and the Sustainable Development Goals (SDGs)
- Based on United Nations
 Framework Classification for
 Resources (UNFC) Principles,
 Generic Specifications and
 Guidelines
- Includes the Pan Africa Reporting Code (PARC)

Introduction

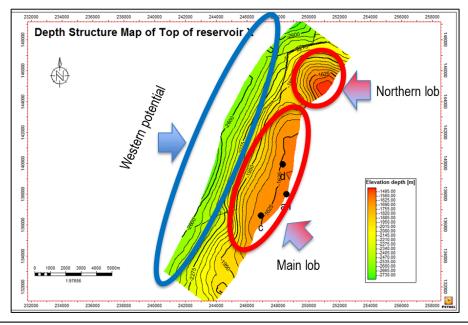
Key sustainability considerations in AMREC (AMV, Agenda 2063, SDGs)

No.	Critical Controlling Factors	Key Focus	Examples
1.	Project milestones and decision gates	Smooth project planning and operation across the full project life-cycle, gap analysis targeted to a specific milestone rather than attempting to cover the whole life-cycle at once.	 Transparency in licensing Project feasibility study Environmental & social impact assessment etc.
2.	Value addition and beneficiation	Assesses the full economic viability and benefit of a mineral resource including, downstream, up-stream and side stream linkages	Value addition policyLicense requirement?Bottlenecks to value addition
3.	Economic diversification	Focus on a resource sector that optimizes Africa's finite mineral resource endowments incorporating high value and lower value resources at both commercial and small-scale levels.	 Diversification policy Other economic activities How livelihood of people are affected
4.	Comprehensive resource recovery	Managing resources in an integrated, multi-targeted manner than a management strategy that targets a single resource.	Access to minerals informationOther minerals than primary
5.	Zero waste concept	Consistent with the principles of the waste hierarchy emphasizing that at the end of the mineral processing cycle, there should be zero waste	Zero waste policyApplication of waste hierarchy?Who handles the waste

How AMREC relates to UNRMS


In pursuit of integration

Principle 1. State rights and responsibilities in the management of resources cuts across


	AMREC Critical Controlling Factors	UNRMS Fundamental Principles
1.	Project milestones and decision gates	Principle 2. Responsibility to Planet Principle 4. Social Contract on Natural Resources Principle 9. Health and Safety Principle 11. Transparency
2.	Value addition and beneficiation	Principle 7. Value Addition
3.	Economic diversification	Principle 3. Integrated Management of Resources Principle 5. Service Orientation Principle 10. Innovation Principle 12. Continuous Strengthening of Core competencies
4.	Comprehensive resource recovery	Principle 6. Comprehensive Resource Recovery
5.	Zero waste concept	Principle 8. Circularity

A Generalized Approach to application of AMREC

The four-stage approach

Malingo Oil Project

No.	Project	Recoverable Volume (MMBBL)
1.	Waterflood recovery (Main lob)	153
2.	Waterflood recovery (Northern lob)	37
3.	Polymer Incremental (Main+Northern)	25
4.	Western prospects	320

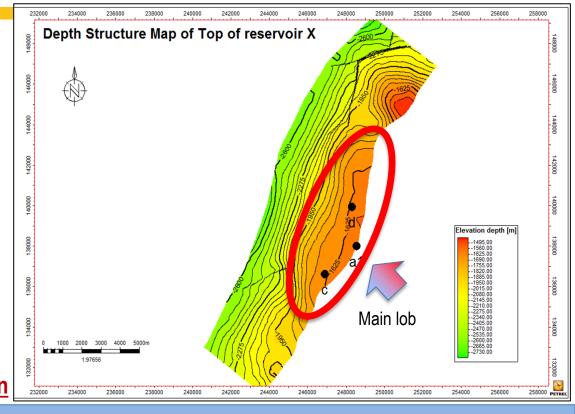
Overview of Malingo Oil Project

- Located in Albertine Graben in Western Uganda
- Two lobs (3-way dip structure) separated by a syncline
- Main lob penetrated by three wells all encountering oil, Northern lob has no well
- OWC hypothesis at 2400 mTVD
- Recoverable volume estimated using the volumetric method and supported by analogues ($OIP = A \ x \ hx \ \emptyset \ x \frac{1-Sw}{FVF}$)
- Has a production license but not yet producing
- Western potential lie in shallow water lake
- Predominant activity of local community is fishing

Malingo Oil Project – Main Lob Example

Degree of Confidence (G-Axis)

- Sandstone reservoir in fluvial-deltaic environment
- Covered by 3D seismic
- Three (3) appraisal wells drilled, all successful
- OWC Penetrated at 2400 mTVD
- Very good reservoir properties ($\Phi > 0.25$, K > 1000mD)


Technical Feasibility (F-Axis)

- Waterflood feasibility study successful
- Development strategy approved by Government
- Project sanction anytime but less than 5 years

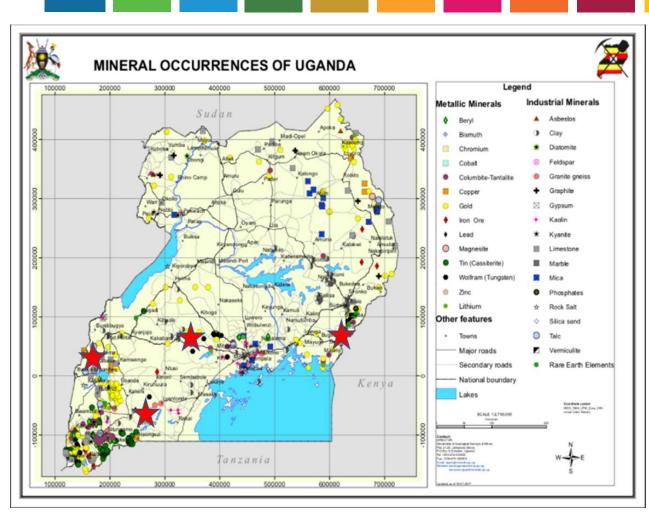
Environmental-Social-Economic Viability (E-Axis)

- Commercial & Economic viability proven
- Environmental impact assessment report under review for approval Classification

G-Axis: G1 (Quantities associated with a known deposit that can be estimated with a <u>high level of confidence</u>)

F-Axis: F1.3 (Sufficiently detailed studies have been completed to demonstrate the feasibility of extraction by implementing a defined development project or mining operation)

E-Axis: E1.1 (Extraction and sale is economic on the basis of current market conditions and realistic assumptions of future market conditions)


Malingo Oil Project

UNFC Classes Defined by Categories and Sub-categories Produced Sold or used production Production which is unused or consumed in operations **Categories** Class Sub-class Ε G On Production 1.1 1, 2, 3 **Viable Projects** Approved for Development 1.2 1, 2, 3 **Total Products Justified for Development** 1 1.3 1, 2, 3 **Known Sources Development Pending** 2^b2.1 1, 2, 3 **Potentially Viable Projects Development On Hold** 1, 2, 3 2 2.2 **Development Unclarified** 3.2 2.2 1, 2, 3 Non-Viable **Projects Development Not Viable** 3.3 1, 2, 3 2.3 Remaining products not developed from identified projects 3.3 1, 2, 3 4 Potential Sources [No sub-classes defined] **Prospective Projects** 3.2 3 4 Remaining products not developed from prospective projects 3.3 4 4

Summary of Classification

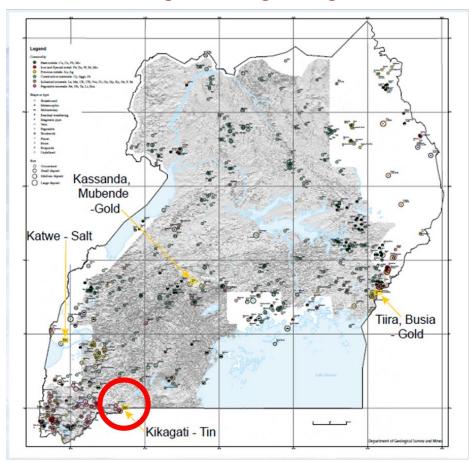
No.	Project	Volume (MMBBL)	E	F	G	UNFC Class/Sub-Class
1.	Waterflood recovery (Main lob)	153	1.1	1.3	1	Justified for Development
2.	Waterflood recovery (Northern lob)	37	2	2.1	2	Development Pending
3.	Polymer Incremental (Main+Northern)	25	2	2.2	3	Development on hold
4.	Western Prospects	320	3.2	3	4	Exploration project

Minerals Project

Projects studied

- Gold Mining in Tiira, Busia, Eastern Uganda (500,000 ounces)
- Gold Mining in Kassanda, Mubende, Central Uganda (5 million ounces)
- Tin Mining in Isingiro, Western Uganda (2.5 million tons)
- Salt Mining in Lake Katwe, Kasese, Western Uganda (12.6 metric tons)

Sustainability test


- Each project was assessed on how they conform to the critical controlling factors.
 - ✓ Project Millstone & Decision gate
 - ✓ Value addition and beneficiation.
 - ✓ Economic diversification
 - ✓ Comprehensive resource recovery
 - ✓ Zero waste concept

Criteria

Meets Expectation = greater than 70% conformity Average = at least 50% conformity Below Expectation = Less than 50% conformity

Minerals Project – Tin Example

Tin— Kikagati, Insingiro, Uganda

Project Milestone & Decision gate (Meets Expectation)

 Project conforms and has an approved ESIA with a mine closure plan, feasibility with a long-term plan was also approved

Value Addition & Beneficiation (Below Expectation)

 Separation of tin from mined rubble is the highest notable value addition, extracted tin is exported as an unprocessed raw material, lack of tin smelting blamed on huge electricity requirement

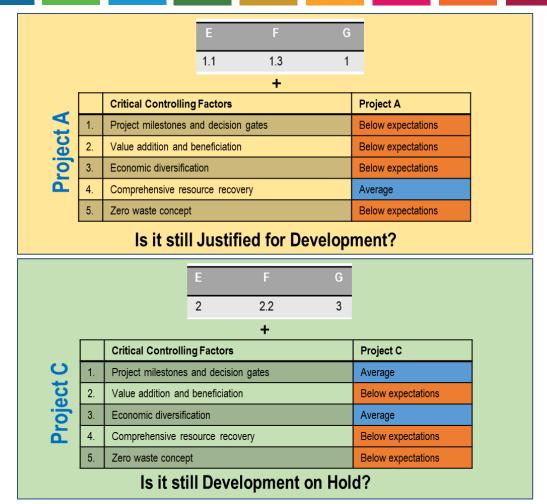
Economic Diversification (Below Expectation)

 Remains limited, activities restricted to tin mining only although some support like pipe water is given to the community

Comprehensive Resource Recovery (Meets Expectation)

 Plausible evidence, in addition to tin, iron is also harvested during the separation process. Importantly, the non-mineralised rocks are washed and separated into aggregates of gravel and sand used in other construction works

Zero Waste (Average)


 Satisfactory, the only waste output is muddy water, which drains into the River Kagera, part of this "wastewater" is re-used for repeated phases in the ore separation process.

Sustainability results

These results guides classification on the E and F axis of the UNFC

	Critical Controlling Factors	Project A	Project B	Project C	Project D
1.	Project milestones and decision gates	Below expectations	Meets expectations	Average	Below expectations
2.	Value addition and beneficiation	Below expectations	Below expectations	Below expectations	Below expectations
3.	Economic diversification	Below expectations	Below expectations	Average	Average
4.	Comprehensive resource recovery	Average	Meets expectations	Below expectations	Below expectations
5.	Zero waste concept	Below expectations	Average	Below expectations	Below expectations

Re-evaluation of projects (illustration)

			Е	F	G		
			1.1	2.1	2+3		
				+			
		Critical Controllin	g Factors			Project B	
m	1.	Project milestones and decision gates			Meets expectations		
さ	2.	Value addition and	beneficiation	n		Below expectations	
) je	3.	Economic diversific	ation			Below expectations	
Project B	4.	Comprehensive res	source recov	very		Meets expectations	
	5.	Zero waste concep	t			Average	
		ls it	still De	velopmer	nt Pend	ding?	
			E	F		G	
			3.2	3		4	
				+			
		Critical Controllin	g Factors			Project D	
	1.	Project milestones and decision gates			Below expectations		
C	2.	Value addition and beneficiation		Below expectations			
	2	Economic diversification		Average			
oj.	3.	Leonomic diversine	ation				
Project D	4.	Comprehensive res		very		Below expectations	
Proje			ource recov	/ery		Below expectations Below expectations	

Conclusion

- UNFC remains the classification system capable of universal application
- But it is no longer enough to just classify projects
- The tenets of sustainable development must be at the heart of any resource management system
- Africa has made progress but more needs to be done to achieve global aspirations.

THE VIEWS EXPRESSED ARE THOSE OF FELIX BOB OCITTI AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE UNITED NATIONS.

Thank you!

Name Surname: Ocitti

Member, AMREC Working Group

UNECE

Date 25 I 04 I 2024, Geneva

RESOURCE MANAGEMENT WEEK 2024

