Development and Application of a UNFC-Compliant Classification Methodology for Aluminum Scrap Recovery Projects

RESOURCE MANAGEMENT WEEK

2024

Marina von Vietinghoff-Scheel, German Minerals Agency, German Geological Survey (DERA, BGR)

Existing case studies – anthropogenic resources

Review key findings

- → Different approaches and methodologies (especially Gaxis)
- \rightarrow Deposit vs. waste stream
- → 199 different controlling factors
- → All case studies from academia – no industrial case study

Methodology - aluminum scrap recovery project

Development of methodology applicable for aluminum scrap recovery projects...

...based on literature and case studies, UNFC guidelines and specifications and **expert interviews with industry**

Review key findings

→ Different approaches and methodologies (especially Gaxis)

- \rightarrow Deposit vs. waste stream
- → 199 different controlling factors
- → All case studies from academia – no industrial case study

Case study – aluminum scrap recovery

Case study – Controlling Factors

E-axis

- Enviornmental viability
- Social viability
- Economic viability
- Legal aspects

On production \rightarrow E1

F-axis

- Technology Readiness Level
- Infrastructure

G-axis

- Quantity
- Quality
- Supply continuity

F-axis - Categorization

Controlling Factor	Description	Category		
		BAU	BAU+	
Technology	Description of technology and assessment of maturity - TRL connected to UNFC Categories	Mixed Al scrap F 1	Aggregated pure-grade Al alloysF 1.3 (TRL 7)	
			Mixed Al scrap restF 1.3 (TRL 7)	
Infrastructure	basic physical and organizational structures and facilities required to maintain operation(s)	Mixed Al scrap F 1	Aggregated pure-grade Al alloys	
			Mixed Al scrap restF 1	

G-axis - Categorisation

Controlling Factor	Description	Category	
		BAU	BAU+
Quantity	Amount of product material - MFA	Mixed Al scrap G 1	Aggregated pure-grade Al alloys G 1
			Mixed Al scrap restG 1
Quality	composition and project related important physico-chemical properties of material	Mixed Al scrap G 3	Aggregated pure-grade Al alloys G 1
			Mixed Al scrap rest G 1
Supply continuity	Confidence in the estimates of the material source and recovery production over a period of time	Mixed Al scrap G 1	Aggregated pure-grade Al alloys G 1
			Mixed Al scrap restG 1

Case study - result

Identified Problems & Recommendations

THE VIEWS EXPRESSED ARE THOSE OF MARINA VON VIETINGHOFF-SCHEEL AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE UNITED NATIONS.

Thank you!

Marina von Vietinghoff-Scheel German Minerals Agency, German Geological Survey (DERA, BGR)

UNECE Date 22 I 04 I 2024, Geneva

RESOURCE MANAGEMENT WEEK 2024

