Agreement

Concerning the Adoption of Harmonized Technical United Nations Regulations for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of these United Nations Regulations*
(Revision 3, including the amendments which entered into force on 14 September 2017)

Addendum 127 - UN Regulation No. 128

Amendment 7

Supplement 7 to the original version of the Regulation - Date of entry into force 16 October 2018

Uniform provisions concerning the approval of light emitting diode (LED) light sources for use in approved lamp units on power-driven vehicles and their trailers

This document is meant purely as documentation tool. The authentic and legal binding texts is: ECE/TRANS/WP.29/2018/30.

UNITED NATIONS

[^0]Paragraph 2.2.2.3., amend to read:
"2.2.2.3. Five samples; "
Paragraph 2.4.6., amend to read:
"2.4.6. The marks and inscriptions specified in paragraphs 2.3.1. and 2.4.4. shall be clearly legible and be indelible."

Paragraph 3.2.3., amend to read:
"3.2.3. LED light sources shall exhibit no scores or spots on their optical surfaces which might impair their efficiency and their optical performance. This shall be verified when commencing approval testing and when required in the respective paragraphs in this Regulation."

Paragraph 3.7.2., amend to read:
"3.7.2. The colour of the light emitted shall be measured by the method specified in Annex 4. The measured integral value of the chromaticity coordinates shall lie within the required chromaticity area."

Insert a new paragraph 3.7.2.1., to read:
"3.7.2.1. Moreover, in the case of LED light sources emitting white light and for use in forward lighting devices, the colour shall be measured in the same directions as where the luminous intensity distribution is specified in the relevant data sheet, but only where the specified minimum luminous intensity is exceeding $50 \mathrm{~cd} / \mathrm{klm}$. Each measured value of the chromaticity coordinates shall lie within a tolerance area of 0.025 units in the x direction and 0.050 units in the y direction, containing the measured integral value. The measured value in the direction of maximum luminous intensity and all measured values for a standard (étalon) LED light source shall also lie within the required chromaticity area for white light."

Insert a new paragraph 3.10., to read:
"3.10. Maximum test temperature
In case a maximum test temperature is specified in the relevant data sheet of Annex 1, the following requirements shall apply:
3.10.1. When measured according to the conditions specified in Annex 4, paragraph 5:
(a) The luminous flux values at elevated temperatures shall be within the limits given in the relevant data sheet of Annex 1; and
(b) The colour variation shall not exceed 0.010 .
3.10.2. After completion of the measurement procedure as prescribed in paragraph 3.10.1., the LED light source shall be continuously operated during 1000 h at the relevant test voltage(s); and
(a) In case of an integrated heatsink at an ambient temperature corresponding to the maximum test temperature as specified in the relevant data sheet of Annex I;
(b) In case of a specified T_{b}-point at a T_{b}-value corresponding to the maximum test temperature as specified in the relevant data sheet of Annex I.
3.10.3. After completion of the procedure as prescribed in paragraph 3.10.2., when measured according to the conditions specified in Annex 4, paragraph 5:
(a) The luminous flux values at elevated temperatures shall not deviate by more than ± 10 per cent from the corresponding values of the individual sample measured according to paragraph 3.10.1.; and
(b) The colour variation shall not deviate from the corresponding values of the individual sample measured according to paragraph 3.10.1. by more than ± 0.010.
3.10.4. After completion of the measurement procedure as prescribed by paragraph 3.10.3., the requirements in 3.2.3. shall be verified again."
Insert a new paragraph 3.11., to read:
"3.11. LED light sources without general restrictions
3.11.1. Light emitting area characteristics

The size and position of the nominal emitter box as well as the side(s) of the light emitting area capable to generate the cut-off are specified in the relevant data sheet of Annex 1.

The values of the following characteristics shall be determined by using the method described in Annex 9:
(a) Luminance contrast;
(b) Size and position of zone 1a and zone 1b;
(c) Surface ratio $\mathrm{R}_{0.1}$ and $\mathrm{R}_{0.7}$
(d) Value of maximum deviation $\Delta \mathrm{L}$.
3.11.2. Luminance contrast of the light emitting area
3.11.2.1. The value(s) of luminance contrast of the light emitting area shall be within the limits given on the relevant data sheet of Annex 1.
3.11.2.2. In case in the relevant data sheet only one side of the light emitting area is specified as to generate the cut-off, zone 1 b shall have a position closer to the corresponding side of zone 1a than to the opposite side.
3.11.3. Luminance uniformity of the light emitting area
3.11.3.1. The area of zone 1a (light emitting area) shall be within the nominal emitter box as specified in the relevant data sheet of Annex 1, and the size of the light emitting area shall be within the limits given on the relevant data sheet of Annex 1.
3.11.3.2. The value of $\mathrm{R}_{0.1}$ shall be within the limits given on the relevant data sheet of Annex 1.
3.11.3.3. The value of $\mathrm{R}_{0.7}$ shall be within the limits given on the relevant data sheet of Annex 1.
3.11.3.4 \quad The deviation of the luminance $\Delta \mathrm{L}$ shall not exceed ± 20 per cent."

Annex 4,

Introductory part, amend to read:
"LED light sources of all categories with integrated heatsink shall be measured at ambient temperature of $(23 \pm 2)^{\circ} \mathrm{C}$ in still air. For these measurements, the minimum free air space as defined in the data sheets shall be maintained.

LED light sources of all categories with definition of a temperature T_{b} shall be measured by stabilising the T_{b}-point at the specific temperature defined on the category data sheet.

In case a maximum test temperature is specified in the relevant data sheet of Annex 1 additional measurements shall be carried out at elevated temperatures according to the method described in paragraph 5 of this annex."

Paragraph 2.1., amend to read:
"2.1. The luminous intensity measurements shall be started
(a) In case of an integrated heatsink after 30 minutes of operation; or
(b) In case of a T_{b} point, specified in the relevant data sheet, after stabilisation of the temperature at this T_{b} point."

Paragraph 2.3., amend to read:
"2.3 Normalized luminous intensity of a test sample is calculated by dividing the luminous intensity distribution as measured under paragraph 2.1. and 2.2. of this annex by the luminous flux as determined under paragraph 1.2. of this annex."

Paragraph 2.4., amend to read:
"2.4. Cumulative luminous flux of a test sample is calculated according to CIE publication $84-1989$, section 4.3 by integrating the luminous intensity values as measured under 2.1 and 2.2 within a cone enclosing a solid angle."

Insert a new paragraph 5., to read:
"5. Photometric measurements in case a maximum test temperature is specified
5.1. Temperature and temperature range
5.1.1. Photometric measurements as specified in paragraphs 5.3., 5.4. and 5.5. shall be carried out at elevated temperatures T in steps not larger than 25° C, while the LED light source is continuously operated.
5.1.1.1. In case of LED light sources of a category with integrated heatsink the temperature range is defined by the ambient temperature of $(23 \pm 2)^{\circ} \mathrm{C}$ elevated up to and including the maximum test temperature as specified in the relevant data sheet of Annex 1, whereas the minimum free air space as defined in the relevant data sheet shall be maintained and a period of 30 minutes of operation shall be awaited after each increase of the ambient temperature.
5.1.1.2. In case of LED light sources of a category, for which a temperature T_{b} is specified, the temperature range is defined by the temperature T_{b} specified in the relevant data sheet elevated up to and including the maximum test temperature as specified in the relevant data sheet of Annex 1, whereas the temperature at the T_{b}-point is stabilised before each measurement.
5.2. Voltage

Measurements shall be carried out at relevant test voltage.
5.3. Measurement direction of luminous intensity and colour coordinates

All the values of luminous intensity and the colour coordinates in the temperature range as specified by paragraph 5.1. may be measured in one and the same direction. This direction shall be such that the luminous intensity is exceeding 20 cd for all measurements.
5.4. Luminous flux values at elevated temperatures

The values of the luminous flux at elevated temperatures T in the range as specified by paragraph 5.1. may be calculated by correcting the value of the luminous flux as measured according to paragraph 1.2. of this annex, by the ratio of the luminous intensity values as described in paragraph 5.3. and the luminous intensity value measured at:
(a) $23^{\circ} \mathrm{C}$, in case of an integrated heatsink;
(b) T_{b}, in case a temperature T_{b} is defined.
5.5. Colour variation

The colour variation is the maximum deviation of all colour points (given by the chromaticity coordinates x, y) at elevated temperatures T in the range as specified by paragraph 5.1., from the colour point ($\mathrm{x}_{0}, \mathrm{y}_{0}$) at:
(a) $23^{\circ} \mathrm{C}$, in case of an integrated heatsink:

$$
\max \left\{\sqrt{\left.\left(\mathrm{x}(\mathrm{~T})-x_{0}\left(23^{\circ} \cdot \mathrm{C}\right)\right)^{2}+\left(\mathrm{y}(\mathrm{~T})-\mathrm{y} 0\left(23^{\circ} \cdot \mathrm{C}\right)\right)^{2}\right\}}\right.
$$

(b) T_{b}, in case a temperature value T_{b} is defined:
$\max \left\{\sqrt{\left.\left(x(T)-x_{0}\left(T_{b}\right)\right)^{2}+\left(y(T)-y_{o}\left(T_{b}\right)\right)^{2}\right\}} "\right.$

"Annex 9

Method for the measurement of luminance contrast and luminance uniformity of the light emitting area

1. The luminance measurement equipment shall be capable to distinguish clearly whether the luminance contrast of the light emitting area is above or below the required level for the LED light source under test.

Further, this equipment shall have a resolution of $20 \mu \mathrm{~m}$ or smaller in an area that is larger than the light emitting area of the LED light source under test. In case this equipment has a resolution of less than $10 \mu \mathrm{~m}$, adjacent luminance measurement values shall be arithmetically averaged so as to represent a luminance value of an area of between $10 \mu \mathrm{~m}$ and $20 \mu \mathrm{~m}$.
2. The luminance measurements of an area shall be done in an equidistant grid in both directions.
3. Zone 1 a and zone 1 b shall be determined from luminance measurements of an area which consists of the nominal emitter box as specified in the relevant data sheet of Annex 1 and enlarged to all sides by 10 per cent of the corresponding box dimension (see figure 1). The value L_{98} is the $98^{\text {th }}$ percentile of all values of these luminance measurements.
3.1. Zone 1a (light emitting area) shall be the smallest circumferential rectangle having the same orientation as the nominal emitter box and containing all luminance measurements with a value of 10 per cent or more of the value L_{98}. The value L_{1} shall be the arithmetic average of the values of all luminance measurements in zone 1 a (see figure 2). The value of $\mathrm{R}_{0.1}$ shall be the surface ratio of zone 1 a where the luminance value is exceeding 10 per cent of the value L_{1}. The value of $R_{0.7}$ shall be the surface ratio of zone 1 a where the luminance value is exceeding 70 per cent of the value L_{1}.
3.2. Zone 1 b shall be the smallest circumferential rectangle having the same orientation as the nominal emitter box and containing all luminance measurements with a value of 70 per cent or more of the value L 98 .
4. Zone 2 shall have in both directions 1,5 times the size of the nominal emitter box as specified in the relevant data sheet of Annex 1 and it shall be positioned symmetrically to the nominal emitter box at a distance of $\mathrm{d}_{0}=0.2 \mathrm{~mm}$ to zone 1 a , unless otherwise specified on the data sheet (see figure 3). The value L_{2} shall be the arithmetic average of 1 per cent of all measured luminance values in zone 2 which represent the highest values.

In case in the relevant data sheet more than one side of zone 1a (light emitting area) is specified as to generate the cut-off, for each of these sides a value L_{2} shall be determined as described above.
5. The luminance contrast value(s) shall be the ratio of the luminance value L_{1} of zone 1a and the luminance value L_{2} of zone(s) 2 .
6. In case the nominal emitter box as specified in the relevant data sheet of Annex 1 is subdivided in n areas (e.g. $n=1 \times 4$), the same subdivision shall also apply to zone 1 a .
6.1. For each of the n areas the value $\mathrm{L}_{1, \mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{n})$ shall be the arithmetic average of the values of all luminance measurements in the corresponding area.
6.2. The value $\Delta \mathrm{L}$ shall be the maximum relative deviation of all luminance values $\mathrm{L}_{1, \mathrm{i}}$ from the luminance value L_{1}.

$$
\Delta \mathrm{L}=\operatorname{Max}\left\{\left(\mathrm{L}_{1, \mathrm{i}}-\mathrm{L}_{1}\right) / \mathrm{L}_{1} ; \mathrm{i}=1, \ldots, \mathrm{n}\right\}
$$

Figure 1
Enlargement of the nominal emitter box

Figure 2

Definition of zones 1a and 1b

Figure 3
Definition of zone 2

[^0]: * Former titles of the Agreement:

 Agreement concerning the Adoption of Uniform Conditions of Approval and Reciprocal Recognition of Approval for Motor Vehicle Equipment and Parts, done at Geneva on 20 March 1958 (original version); Agreement concerning the Adoption of Uniform Technical Prescriptions for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of these Prescriptions, done at Geneva on 5 October 1995 (Revision 2).

