UN Regulation No. 13 and Electro Mechanical Brakes
UN Regulation 13 defines:

- **Transmission** means the combination of components comprised between the control and the brake and linking them functionally. *The transmission may be mechanical, hydraulic, pneumatic, electric or mixed.*
- **Control Transmission** - means the combination of the components of the transmission which control the operation of the brakes, including the control function and the necessary reserve(s) of energy.
- **Energy Transmission** - means the combination of the components which supply to the brakes the necessary energy for their function, including the reserve(s) of energy necessary for the operation of the brakes.

→ *The transmission may be mechanical, hydraulic, pneumatic, electric or mixed.*

UN R13 was updated in 1990s to account for an electronic “Control Transmission” but still assumes Pneumatic “Energy Transmission” in the service braking system.

- **Pneumatic Energy limitation is shown in two ways:**
 - Design Specifications – E.g. Where limits are in kPa.
 - Design Limitations – E.g. Where it is assumed air is the medium.

- **Electro Mechanical Brake Technology** is being developed by the industry using *Electric Energy Transmission* in the service braking system and the UN R13 needs to be updated accordingly.
UN R13 and Electro Mechanical Brakes (EMB)
Amendment scope and motivation

- Motor vehicle with EMB brakes on all axles (not mixed with Pneumatic Or Hydraulic systems)
- Motor vehicle with EMB brakes with “conventional” trailer interface according to UN R13
- UN R13-H not included but considered, in particular when creating new definitions

Advantages and possibilities by amending *Electric Energy Transmission* to UN R13
- Improved energy efficiency in EV’s (vs. air compressor)
- Improved braking control
- Elimination of noise emissions from pneumatics
UN R13 and Electro Mechanical Brakes (EMB) Electrification Development

- Improved Vehicle Dynamics Control
- Emission reduction
- Energy efficiency

EBS in Commercial vehicles – (electronic control transmission)

EMB in Commercial vehicles – (electronic control transmission and electric service braking)

1995

- Improved Vehicle Dynamics Control
- Emission reduction
- Energy efficiency

2025

- Improved Vehicle Dynamics Control
- Emission reduction
- Energy efficiency
Improved Vehicle Dynamics Control

- Reduced response time enhancing braking performance.
- Optimized control of safety functions like ABS, ESP, AEBS or Traction control.

Emission reduction

- Reduction of noise vs. pneumatic brake systems.

Energy efficiency

- Significant higher energy efficiency vs. pneumatic brake systems.
- Potential to reduce CO2.

Other

- Weight and space savings
- Easier packaging
2. Definitions

New paragraphs defining **Electric Energy Transmission** (e.g. **Energy Source**, **Electrical Storage device**, **Electrical Supply device**)

5.1.4.6 Reference Braking forces

New paragraph 5.1.4.6.2.
Reference braking forces for electro-mechanical braking system using a roller brake tester shall be defined according to the following requirements.

5.2 Characteristics of Braking Systems.

New paragraph 5.2.1.34.
Special additional requirements for service braking systems with electric control and energy transmissions.

Annex 7, (provisions relating to energy supply and storage)

New Part D
Electro-mechanical Braking system
UN R13 and Electro Mechanical Brakes (EMB)

Energy Transmission principles (Pneumatic vs. Electric)

Pneumatic Energy
- Compressor
- E-APU
- Pneumatic energy storage
- EBS Modulator
- Actuator
- Caliper

Electric Energy
- DC/DC
- Electric energy storage
- Drive and Motor
- Gears
- Caliper

EBS
- Annex 7 part A

EMB
- Annex 7 new part D

New 5.2.1.34.
UN R13 and Electro Mechanical Brakes (EMB)
Development steps comparison

Principal layouts shown
System Description

Example EBS system of today in vehicle with combustion engine

Principal layout

- **Fuel tank**
- **IC Engine**
- **Compressor**
 - Energy Source
- **Generator**
- **24 V battery**
 - Other user of electrical energy
- **APU (Air Processing Unit)**
 - Other user of compressed air

Energy Source

Energy Transmission

- **EBS ECU**
- **ECU**
 - Front axle reservoir
 - Foot Pedal
 - InLine Valves
- **1M Valve**
- **ECU**
 - Rear axle reservoir
 - Foot Pedal
 - 2M Valve

Control Transmission

(example shown only front axle)

Electric

Pneumatic

Pneumatic Storage Device

- **p1**
- **p2**

p1 and p2: Pneumatic energy monitoring and warning if storage falls below a certain level.
Example EMB system in electric vehicle

Vehicle functions

Principal layout

Energy Supply Device

Traction Battery 800V

DC/DC

24 V battery

DC/DC 800V/48V

Other user of electrical energy

Electrical motor

Compressor

APU (Air Processing Unit)

User of compressed air

Energy Source

Pw: Electric energy monitoring and warning if charging demand cannot be met and if below a certain level.

ew: Electric energy monitoring and warning if storage falls below a certain level.

Brake system functions

EMB ECU

Foot Pedal

Front axle brakes

Rear axle brakes

Electrical Storage Device

Electrical Transmission

Pw: Electric energy monitoring and warning if charging demand cannot be met and if below a certain level.

ew: Electric energy monitoring and warning if storage falls below a certain level.
Feedback in short from the delegates so far:

- Further comparison between Compressed Air braking system and Electro-Mechanical braking system requested for better understanding of the differences and need for specific requirements on an EMB system.

- Concerning Electrical Energy Storage devices, and in particular batteries, there is an uncertainty regarding the performance over lifetime vs. a pneumatic reservoir. A reliable and safe way of monitoring the energy level is requested.

- Unclear how the PTI actually will be performed. The boundary conditions as well as a general approach exist but needs to be further verified together with industry and Technical Service representatives.