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1. Introduction 
This document is intended to provide guidance on the major human factors challenges to be considered 
when providing remote support and control to assist vehicle operation under automation. Such remote 
support could extend from the provision of assistance in the event of a breakdown all the way to full 
remote operation, i.e. a vehicle being driven on the public roads by a remote driver. This document has 
been developed to assist in the discussion of both WP.1 and WP.29 on the potential for remote assistance 
and control as assistance for manual and automated driving but also as its own means of vehicle operation. 
It can be acknowledged that not all potential human factors issues have been identified in this brief paper, 
but major known human factors concerns are covered. 

Three major categories of remote support and control can be conceived. Table 1 provides some examples 
of each. 

1. Remote assistance, e.g. by a service provider to provide support and breakdown assistance 
2. Remote management, analogous to air traffic control, to allow a remote controller to assist when a 

vehicle requires authority to move or deviate from a prescribed path 
3. Remote control, which could extend from limited path guidance (e.g. around road works) to full 

remote driving at low speed or even high speed 
Many of the HF challenges can be transposed from the in-vehicle driving task. Thus, the remote operator 
would benefit from a well-designed human-machine interaction (HMI), a well-thought-out sequence for 
transitions of control — for both assuming and relinquishing control and potentially attention monitoring. 
Other challenges are, however, specific to the remote nature of the tasks. Those specific challenges are 
addressed here. 

Road traffic presents a complex, ever-changing environment where safety should be the primary concern. 
The success of remote operation will, however, be affected by many inter-dependent factors specific to the 
remote nature of the tasks (Habibovic et al., 2020). For example, challenges related to situational 
awareness, hand-over, telepresence, change blindness and workload might, if not properly accounted for in 
the design of HMI, lead to risky situations as well as poor experience and work conditions for remote 
operators. Those specific challenges are highlighted and discussed in more detail here. 

2. Management of the remote environment 
Unlike some applications of teleoperation where each remote vehicle has one or more operators, a fleet of 
automated driving system (ADS) vehicles will likely require a method where each remote operator can 
manage many vehicles. Control of multiple remote vehicles or robots presents very different demands on 
operators than does control of a single vehicle (Chen et al., 2011; Lee, 2001). Military and search and 
rescue operations have worked to increase the number of systems a single operator can manage, 
sometimes termed “fan-out”. Fan-out (FO) depends on interaction time and neglect time (Goodrich and 
Olsen, 2003; Olsen and Goodrich, 2003). The interaction time (IT) is the time the remote operator must 
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spend interacting with the vehicle, and neglect time (NT) is the amount of time the vehicle can operate 
without attention from the remote operator, which combine to define fan-out (FO):  

FO = (NT+IT)/IT 

Although this equation seems to provide an easy way to calculate how many vehicles a remote operator 
can manage, the estimation of NT and IT is complex. For instance, interaction time depends on at least four 
factors: (1) vehicle monitoring and selection, (2) context switching, (3) problem solving, and (4) command 
expression (Olsen and Goodrich, 2003). Neglect time is equally challenging to quantify. With ADS failures, 
neglect time does not have a predefined duration or onset and so interaction time cannot be scheduled. 
Instead, it is a random variable. Further, neglect time of one vehicle is not independent of others—a 
thunderstorm might lead to many simultaneous ADS failures. The more system-paced, i. e. outside of the 
control of the operator, the monitoring requests are, the more they overlap in time for different vehicles, 
and the less they can be handled simultaneously by the operator, the fewer vehicles can be controlled by 
one operator without risking neglects. The consequence of neglecting a vehicle varies from simply adding a 
few minutes to a trip to potential additional crash risk for the passengers. Whether an operator can 
successfully intervene strongly depends on neglect time — whether an operator needs to respond in 
minutes to adjust a route or in seconds to avoid a collision. Although difficult to calculate, the fan-out 
equation provides a useful framework for understanding how human factors considerations combine with 
design choices to influence the safety and efficiency of remotely operated fleets. 

Both human remote operators and automated driving systems have their own intelligence and capability to 
act, and it is part of the task of remote operators to manage the automation (especially in the context of 
switching between vehicles of different capabilities). An ADS may fail, but failure of basic vehicle safety 
systems, including technologies such as AEB or ESC, is also a potential problem. Part of the role of the remote 
operator is to be aware of the capabilities afforded by such systems, and remote operation will benefit from 
having procedures in place to deal with such failures.  

From numerous studies in automotive and other domains it is known that insufficient situational awareness 
leads to failure. In the context of remote operation, limited situation awareness could occur due to reduced 
sense of the vehicle and detachment from the action (i.e. lack of embodiment). The remote operator has no 
bodily feeling of the vehicle and the view outside, and even if communicated via camera and similar sensors, 
the sensation might provide only limited understanding of the conditions. In addition to this, physical 
detachment from the vehicle might also lead to decreased feeling of urgency, which in some situations could 
have negative consequences on the entire operation. There are also potential ethical concerns induced by 
physical detachment from the vehicle and traffic situation. That is, remote operators could lack empathy and 
sensitivity towards their surroundings, especially seen from the perspective of passengers of the vehicles 
being remotely controlled.  

While various sensors available in automated vehicles might be able to “enrich” information provided to a 
remote operator as compared to an on-board driver, there is risk of information overload (which might be 
amplified due to the plurality of vehicles). In other words, replacing the bodily feel of the vehicle with 
sensor information could come with the trade-off of information overload, and remote operators could be 
exposed to too much information with the result that they would no longer have the capability to 
understand the situation. A related challenge is change blindness or failure to detect relatively large 
changes in visual scenes. For example, if remote operators are overloaded with information, or if they are 
engaged in continuous monitoring, they might fail to notice important changes in the scene.  

In other domains, boredom of remote operators has been commonly reported. Also, it is natural to expect 
that inattention and distraction might occur as well. Depending on the design of workstation and the tasks 
of the remote operator, motion sickness might occur (similar to the motion sickness in driving simulators). 
To this end, it can also be added that there might be a need to monitor the remote operator. In a control 
room there is also the potential to move around more freely, so that the operator might not even be 
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physically at the workstation when a call comes in. System design may benefit from asking questions such as: 
how to gain operator attention, how to allocate jobs to operators, how to ensure the operators are attentive.  

Transfer of control (hand-overs/hand-offs) between the system and operator, as well as between operators 
at break times and at the end of shifts, is also a critical phase where risk of failure is increased, and therefore 
changing operators may benefit from planned and careful execution. In particular, evaluation of the process 
of hand-overs and collaboration between remote operators and “local” operators (i.e. those inside or in the 
vicinity of vehicle) may provide the most benefit.  

On a general level, the question arises of whether an adequate, or optimal, remote driving station is a 
replica of the driver environment of vehicles of today or “something else”. It might well be that a remote 
driver station and its HMI contain more and other functionality than is available to a driver of today. Best 
practice in operation centres is applied by analysing workflows of the real task and designing the remote 
operation centre around the workflows and the human operator. In other words, applying a user centred 
design focusing on factor such as optimum seating distance, information presentation, task simplification, 
noise and light optimization. 

3. Training and personnel 
The remote personnel are, by definition, professionals and therefore may be expected to have received 
specific, targeted training. Where they are able to remotely drive a vehicle, they might have to hold the 
appropriate driving licence for that vehicle category. As with other types of safety critical shift work, the 
organization and its employees can benefit from health checks, e.g. for sleep apnoea, especially when they 
may be operating a public service vehicle. 

Depending on the nature of the remote support, remote personnel may need to be familiar with the 
prevailing traffic rules for the roads on which the vehicles are operating. There could be a case for 
handover from one controller to another at national, regional or state/province borders. 

Propensity of remote drivers to motion sickness is a concern. Already in 1949, Birren warned of the 
negative performance effects of motion sickness. This has been particularly studied in the naval context 
(e.g. Bos and Bles, 2000; Colwell, 2002). 

4. Controls and displays 
Operator performance is best supported when controls and displays are aligned with the specific duties of 
the remote operator. The requirements for controls and displays might be very different when a remote 
operator only needs to verbally assist a person inside a vehicle with some simple advice that is not safety-
related versus a situation when a remote operator is controlling a vehicle at high speed. 

When thinking about the physical controls that a remote operator may have, options could include 
traditional vehicle controls such as a steering wheel, brake and accelerator pedal, as compared to a joystick 
or head-slaved controls. Joystick operation is already a feature for (local not remote) safety driver control in 
certain shuttle vehicles, but this is limited to very low-speed operation. Vehicle motion control is much 
more of a challenge in high-speed driving. For more limited vehicle control, buttons or a kill switch may be 
sufficient.  

Currently, much literature is focussing on remote control of robots, for instance for search and rescue, tele-
surgery, advice from a distance etc. Although this has hardly been studied in driving, the sense of 
telepresence is very important when an operator is physically separated from the vehicle. Based on 
experience from those domains, it seems reasonable that extending the visual feedback with force 
feedback in driving controls could be able to improve performance, since it may help the remote operator 
to better perceive the information from the remote environment and its constraints, hopefully contributing 
to the prevention of dangerous collisions. In their study on a control joystick to avoid collisions with 
airborne vehicles, Alaimo et al. (2011) showed that adding haptic cues to provide a sense of urgency of the 
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impending collision (actually offering support) helped improve performance. The type of haptic feedback 
(direct or indirect) also affected performance. 

An important question also remains whether a remote operator should always be able to fully control the 
vehicle and initiate any action, or whether the driving automation system supporting that vehicle should 
protect the operator from error by prohibiting specific control actions or asking for a confirmation (“Are 
you really sure you want to…?”).  

From studies of operator performance in driving simulators, it is well known that, in addition to haptic 
feedback, the provision of motion feedback greatly assists vehicle control, particularly in deceleration and 
curve driving (Carsten and Jamson, 2011). 

The display element of the HMI for remote operators plays a crucial role. This is because, unlike with direct 
vehicle-based HMI, the operator has only indirect access to the in-cab or driving environment, and is 
therefore much more reliant on the visual medium for information acquisition, interaction, feedback and 
control.  

It may be useful to categorize two types of display in this context, one set showing the operator what is 
going on in and around the vehicle, and another set to be used by the operator to interact with the vehicle 
when the automated system requests assistance. However, to ensure that operators achieve acceptable 
performance, the interfaces should not overwhelm the operator with too many devices (e.g. displays and 
controls) that simultaneously request a high level of cognitive and motor skills. 

Van Erp and Padmos (2003) studied the effects of indirect viewing on driving performance. They identified 
the critical image parameters of such systems on vehicle control, both in simulated and in real world 
driving. Important parameters were magnification factor and field of view. In addition, image resolution 
was important, with low resolution leading to overestimation of distances and reduced quality of lateral 
control. A literature overview by Van Bakker et al. (2000) in the military domain showed that restriction of 
peripheral vision (i.e. smaller field of view) can degrade control of vehicle path, speed estimation, and time to 
contact estimates. Degraded foveal vision (contrast and resolution) can affect lane keeping and object detection.  

Thus the following aspects of display provision all need to be considered: 

• Resolution (pixel density) 
• Field of view and provision of mirrors 
• The possible need for stereo vision to provide depth sense, thus helping to judge the positions of 

targets and possible obstacles in the remote environment 
• Contrast and brightness 

To reduce communication load, it may be possible to create a synthetic or semi-synthetic view of the 
remote scene, for example through a combination of HD maps and augmented reality. Virtual reality may 
have a role here. 

Remote operator eyepoint will affect speed perception and the possibility of detecting vulnerable road 
users. Eyepoint height differs from one vehicle to another, and operators may need to adapt to this as they 
shift from controlling one vehicle to control of another. 

Multiple displays, as with a “driver” view, an external birds-eye view of the scene, and a screen showing 
vehicle system status, may create new demands on the operator and task-switching requirements. Which 
screen is to be prioritised? Modality of information to and support for the operator needs to be carefully 
considered. Operator workload could be very high, leading to a need for more rest periods or shorter shifts. 

5. Communications channels 
Reliable and appropriate communications are an essential element in any remote support for vehicles 
equipped with automated driving systems. Poor communications may compromise task performance, even 
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if the remote operation is conducted by experts. The remote worker in the control centre benefits from 
communications in appropriate modalities. For remote assistance, auditory communication might be 
sufficient with relatively low demand on bandwidth. But moving to the higher levels of remote support 
(categories 2 and 3) places greater demands on communications. For category 2, video linkage will likely be 
required, most likely between the AV’s camera and the remote controller. There will also be a need to pass 
vehicle diagnostic information to the remote workstation. Very low latency may not be a requirement, but 
assurance of robust communications is likely to be important to support human performance. 

With remote operation, the situation becomes far more demanding. There will probably be a need for a 
high-resolution video and audio feed from the vehicle, possibly in stereo (see section 4). The greater the 
pixel resolution and the greater the field of view required, the more the demand on bandwidth. Lags and 
judders in communication also become critical. If there is a one second delay in a remote operator 
receiving the remote scene and further half second delay in the transmission of a control command to the 
subject vehicle that would add 1.5 seconds to the normal one-second reaction time of a driver to an event, 
which in many situations would incur a major increase in risk. Control of the vehicle would also become 
erratic. Many studies (e.g. Sheridan and Ferrel, 1963; Lane et al., 2002) have shown that fixed time lag can 
be a problem for remote operation, but Davis et al. (2010) found that variability in lag was even more of a 
challenge to good performance in remote operation than lag itself. This indicates that consistency of 
transmission could be a basic requirement.  

Reaction time is linked to, and often enhanced by, operator expectations. If a remote operator is working in 
a denuded environment, without perception of the traffic and roadway ahead, then that operator will not 
be primed by the circumstances to react fast, and will likely have a delayed response. 

6. Passenger needs and requirements 
Confidence and trust in these systems is important for their adoption. Users (passengers, drivers) may be 
comforted by the idea of remote human support yet not be accepting (or be afraid) of remote human 
operation. Visual (and possibly auditory) monitoring inside and outside the vehicle may be necessary to 
support remote operation, but such constant personal monitoring raises issues of surveillance and privacy 
and these data must be handled appropriately. Some remote operation solutions may be acceptable while 
others may not and this may vary by user group.  

Passenger needs will differ depending on the type of ADS and the form of remote interaction and support 
that is provided. When a driver is in the vehicle, a remote operator may be engaged for a brief duration to 
resolve a specific situation or for a longer period as required. The remote operator may assume full control 
of the vehicle or only partial control with the driver’s permission. In all instances an effective HMI and 
protocol supports safe operation by supporting the communication and interaction between the driver and 
the remote operator. 

The needs and expectations of passengers riding in fully automated buses and shuttles need to be met 
when there is no operator/driver on board. Although automation will perform the driving task, it may not 
perform some of many additional functions usually performed by on-board human drivers (e.g. Salmon, 
Young and Regan, 2011). Remote operators may become responsible for these functions. 

As an example, prior to closing the door, it is important to confirm that all waiting passengers have 
boarded. Before moving the vehicle, passengers should be safely seated or in an appropriate standing 
position.  

Some passengers may require assistance, others may attempt to board beyond the vehicle load limit, an 
unruly passenger behaviour may require intervention, or cargo may come loose and present a safety risk, 
just to name a few possibilities. 

Medical emergencies and crashes pose the most serious safety concerns. These are time-critical and 
require accurate perception, comprehension, an effective response and action. They require stopping and 
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securing the vehicle, attending the injured, coordinating passenger emergency exit and on-board 
communication with dispatch and emergency crew. These are complex coordinated actions that may 
require the coordination of multiple remote operators.  

Passengers need solutions to communicate and initiate emergency stops as well as regular stop requests 
(Automated Vehicle Safety Consortium, 2020). Unexpected events such as ADS-initiated trip interruptions 
will need to be properly communicated to avoid passenger confusion. HMI solutions are needed between 
passengers and remote operators to support communication and interaction for both typical daily and 
emergency operations. 

7. Service design 
The human factor challenge varies depending on the service design. Definition of the Operational Design 
Domain (ODD) for a service determines complexity of interaction of the service vehicle with other road 
users. When the service is established within an isolated dedicated track, the interaction is restricted to 
that with other service vehicles and the human factor challenge is minimised. On the other hand, when the 
service is established in a mixed traffic environment, the interaction can be with other cars, bicycles, and 
pedestrians. This can generate complicated situations where the remote operator needs to intervene. 
When the service is designed to slow down or stop the vehicle after notifying the remote operator to 
intervene, the remote operator is given more time to handle the situation than if taking over a running 
vehicle. When the number of service vehicles for one remote operator increases, the human factor 
challenge becomes larger, because management of operator’s attention among the vehicles becomes more 
complicated. There are other service design factors that influence human factor challenges. 

8. Conclusions 
Remote control and operation is complex. It should not be assumed that remote handling constitutes a 
viable backup for problems encountered by vehicles under the control of an ADS, or that remotely 
controlled driving of a vehicle is feasible in busy environments or on high-speed roads. 

Thorough investigation of different use cases is needed. A safety case should be prepared for each specific 
application of remote support and control. Low speed remote operation may be easier in simple vehicle 
control terms than high-speed operation, but it should be remembered that low-speed environments tend 
to be the busiest, and that, in interactions in urban traffic, accurate perception of the surroundings and 
very fast reactions are typically needed. Currently, there is a lack of evidence that remote vehicle operation 
on public roads can be performed safely. 

The proper design of the work environment for remote control and operation is also important. For 
management, lessons can be learned from air traffic control; for control, the driving environment imposes 
demands beyond those encountered in other transport modes. 

9. Implications for UNECE WP.1 and WP.29 
Both WP.1 and WP.29 have adopted principles and guidance on road vehicle automation. The WP.1 
Resolution on the Deployment of Highly and Fully Automated Vehicles in Road Traffic, adopted in 
September 2018, states that an Automated Driving System “refers to a vehicle system that uses both 
hardware and software to exercise dynamic control of a vehicle on a sustained basis.” The resolution states 
that Automated Driving Systems should make road safety a priority, monitor and safely interact and 
tolerate road user errors with surrounding traffic. It further states of the term Highly automated vehicle 
that: “[It] refers to a vehicle equipped with an automated driving system. This automated driving system 
operates within a specific operational design domain for some or all of the journey, without the need for 
human intervention as a fall-back to ensure road safety.” No mention is made of any possible assistance 
from or fallback to a remote centre. In a new version of this text, there should be consideration of the 
possibility of remote support, and thus the definition of an Automated Driving System may need to be 
expanded so as to encompass any required remote support. 
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The WP.29 Revised Framework document on automated/autonomous vehicles, adopted in 2020, states that 
“an automated/autonomous vehicle shall not cause any non-tolerable risk” and then lays out a number of 
key issue and principles that need to be addressed as priority items by the subsidiary bodies of the Working 
Party. A definition of “automated/autonomous vehicles” is not provided, but there is no mention of remote 
support as means of assistance, and remote support is not listed in the priority items. It is therefore 
suggested that a whole system approach be adopted in GRVA and its sub-groups and that remote support 
be added to the list of priority issues to be addressed. 

HF-IRADS will continue to examine the issues discussed here, monitor relevant research activities and 
support the UNECE in its efforts. 
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Table 1: Examples of types of remote support 

 Remote Operation Functions (Remote Human) Examples 
Remote Assistance 
 
 

o Provide information (e.g. passenger inquiry), support 
and assistance (service provider) 
 

o On-board monitoring (visual and auditory?) 
 

o Information requests, breakdown assistance (tow Truck) 
(e.g. On-Star) 

o Stop request, emergency request, ACN communications 
o Monitoring for safety and security (e.g. on a shuttle) 

   
Remote Management  
 

o Assistance for hazard detection; scan environment 
o Authority to resume movement (or stop, partial or 

full control  
o Authority to deviate from fixed path  
o Limited path guidance in special situations 
o Provides perception/detection; has some authority 

to resume movement; based on human perception, 
intervention and action 

 

o Hazards in roadway that are unexpected such as uneven 
road, new construction, roadway blockage…. 

   
Remote Operation 
 
 
 
 

o Temporary or full control (DDT) under normal, 
unexpected or emergency conditions  
 

o Full remote driving – slow speed  
o Full remote driving – high speed 

 

o Dealing with failure modes, MRM  
 
 
o Intervening and guiding shuttles on a path or road at low or 

high speeds 
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