Informal document GRSP-68-08-Rev.1 (68th GRSP, 07-11 December 2020 agenda item 16)

Does female occupants have the same protection level as male occupants?

Are Crash test Dummies Representative of the Population?

A pre-study

Anna Carlsson, Stiftelsen Chalmers Industriteknik Pernilla Bremer, Sweden

No.

Purpose of this study?

- Have female occupants the same protection level as male occupants?
- How representative are crash test dummies of the female population?

General statistics

Injury risks are higher for females than males*)

*) when controlling for factors such as crash severity, restraint usage, blood alcohol content

RESULTS

General statistics

Females in comparison to males:

Narragon et al. (1965):

• Evans (2000):

Bedard et al. (2002):

• Bose et al. (2011):

Forman et al. (2019)

11% higher injury risk

35% higher fatal injury risk (25 yo)

54% higher fatal injury risk

47% higher MAIS 3+ injury risk

71% higher MAIS 2+ injury risk

73% higher MAIS 3+ injury risk

142% higher MAIS 2+ injury risk

General statistics

Females greater risk of:

• Spine, thorax, extremity injuries (Welsh & Lenard 2001; Bose et al. 2011; Parenteau et al. 2013; Kahane 2013)

Males greater risk of:

Head injuries
 (Parenteau et al. 2013; Welsh & Lenard 2001)

General statistics

Females:

- Sustain injuries at lower
 velocity changes (Δν)
 (Mackay & Hassan 2000; Welsh & Lenard 2001s)
- Show greater increase in thoracic injuries with increasing age (Ridella et al. 2012; Forman et al. 2019)

Permanent medical impairment

Whiplash

Females have

 a higher risk
 of whiplash injury

Whiplash

 Whiplash protection systems are (in general) less effective tor females compared to males (Kullgren & Krafft 2010)

Whiplash

Different effectiveness in protecting females with different types of whiplash protection systems
(Kullgren et al. 2013)

Whiplash Protection System

Are we different?

• Size:

Average female: 162 cm / 62 kg

Average male: 175 cm / 77 kg

(Schneider et al. 1983)

Mass distribution
 (Young et al. 1983; McConville et al. 1980)

RESULTS

Different size

- Different seated posture
- Females tend to have:
 - Different arm position
 - Shorter head restraint distance
 - Shorter distance to steering wheel
 - Different leg position
 - More upright seated posture
 - Shorter distance to floor pan

Different geometry

Example:

- Focus on the HR being positioned too low ("males"),
- No focus on the HR being positioned too high ("females")

Head restraint in low position Average male

Head restraint in high position

Average female

RESULTS

Are we different?

- Size
- Mass distributions
- Age dependence
- Hormones
- Pregnancy
- Anatomy
- Osteoporosis

SESULTS SESULTS

Existing Crash Test Dummy Sizes

Small female (5th percentile)

Stature: 1.51 m Mass: 47 kg Average female (50th percentile)

Stature: 1.62 m Mass: 62 kg Stature: 1.75 m Mass: 77 kg

Average male

(50th percentil

Stature: 1.87 m

Large male

(95th percentile)

Mass: 102 kg

www.humaneticsatd.com/crash-test-dummies

Distribution of statures

Based on Pheasant & Haslegrave (2006)

Rear impacts

- Statures & masses
 of females with whiplash injuries
 in Switzerland & Sweden
- An average female dummy would correlate in size to the females most frequently injured

RESULTS RESULTS

Available Crash Test Dummies

Impact Direction	Dummy Type	Dummy Size			
		Female		Male	
		Small	Average	Average	Large
Frontal	THOR	×		×	
	HIII	×		×	×
	HII			×	
Side	SID-IIs	×			
	ES-2			×	
	ES-2re			×	
	WorldSID	×		×	
Rear	BioRID-II			×	

To conclude

- Crash related injury risks are higher in females
- Females poorly represented by existing dummies

Future needs

- Dummies of both men and women, of different sizes and ages, for robust vehicle safety assessment
- Information about body size (stature and mass) in traffic injury databases
- Injury data reported for females and males separately

Future possibilities

 Human body models of females and males may provide a powerful extension to the crash test dummies in future virtual test procedures

Thank you for your attention!

