Organising & Merging Safety Elements and Industry Proposal

1 System Safety
 Design & Validation Processes (best practices, design principles, standards)
 Testing methods
 Operational Design Domain setting and recognition
 Minimal Risk Manoeuvre
 Take over of DDT (if required, based on level of automation)
 Risk Analysis & Mitigation
 Inadequate Control

 a Human Machine Interface
 User (Driver / Passenger) information
 Take-over request
 System status
 Malfunction
 Communication of critical messages
 Minimum risk manoeuvre in operation
 Automated mode active
 Driver availability and override possibility (if required, based on level of automation)
 Signalling driving intentions to other road users

 b System Performance
 Performance in critical / complex situations (includes response to priority vehicles)
 Scenario recognition (object and event detection)
 Understanding the system limits and boundaries
 Dynamic behavior in road traffic
 Adherence to rules of the road (Federal and local laws)
 Vehicle behaviour predictability

 c Safety of in-use Vehicles
 Inspections / Repair / Modifications processes
 Software / system update process
 Vehicle state monitoring
 Post-crash behaviours
 Collision notification to occupants and emergency services, return to a safe-state.
 # existing reg have to be complied with
 # for ADS a review needs to be initiated

 d Cybersecurity
 Risk Analysis & Mitigation strategies
 Incident management
 Documentation strategies/changes/testing
 Cyberattack events

2 Consumer Awareness/Education
 Training programmes
 System Operational domain/limits
 Systems prescribed use

3 Data Recording & Storage System
 Protocol, recording interval, data elements
 Recording capacity / standardised access

Vision statements:

European Union
- To make Europe a world leader in the deployment of connected and automated mobility, making a step-change in Europe in bringing down the number of road fatalities, reducing harmful emissions from transport and reducing congestion.

United States
- To improve quality of life and enhance the mobility and independence of millions of Americans, especially older Americans and people with disabilities.
- To increase productivity and facilitate freight movement.
- To impact safety significantly, by reducing crashes caused by human error, including crashes involving impaired or distracted drivers, saving lives.

Canada
- To have the safest and most efficient movement of people and goods by road in the world. Hope that the technologies will lead to a significant reduction in traffic collisions and thereby result in corresponding reduction in fatalities and injuries.

Japan
- To realise a society where traffic accidents caused by Automated Driving Systems resulting in injury or death become zero.

To make Europe a world leader in the deployment of connected and automated mobility, making a step-change in Europe in bringing down the number of road fatalities, reducing harmful emissions from transport and reducing congestion.

To improve quality of life and enhance the mobility and independence of millions of Americans, especially older Americans and people with disabilities.

To increase productivity and facilitate freight movement.

To impact safety significantly, by reducing crashes caused by human error, including crashes involving impaired or distracted drivers, saving lives.

To have the safest and most efficient movement of people and goods by road in the world. Hope that the technologies will lead to a significant reduction in traffic collisions and thereby result in corresponding reduction in fatalities and injuries.

To realise a society where traffic accidents caused by Automated Driving Systems resulting in injury or death become zero.