SafeFITS

A Road Safety Decision-Making Tool

Working Party on Transport Statistics
Geneva, 12-14 June 2018
SafeFITS

• Road safety decision-making tool
 • Aim to assist governments and decision makers
 • Database on road safety indicators (i.e. fatalities and injuries, performance indicators, road safety measures, economy and background) for all countries worldwide
 • Statistical model of global causalities allowing “intervention”, “forecasting” and “benchmarking” analyses

• Current Status
 • Model finalized (after June 2017 peer review)
 • www.unece.org/trans/theme_safefits.html
 • Final version of web application presented at Inland Transport Committee (ITC) February 2018
 • Pilot studies being conducted in Albania and Georgia
Conceptual framework

- Based on five pillars of WHO Global Plan of Action and improved version of SUNflower pyramid

SafeFITS layers
1. Economy and Management
2. Transport Demand and Exposure
3. Road Safety Measures
4. Road Safety Performance Indicators
5. Fatalities and Injuries

SafeFITS pillars
1. Road Safety Management
2. Road Infrastructure
3. Vehicle
4. User
5. Post-Crash Services
Database

- **Data for 130 countries**
 - Population greater than 2.8 million
 - From international databases: WHO, UN, IRF, OECD and others
 - Refers to 2013 or latest available year

- **Availability**
 - Data available for large majority of countries and indicators
 - Low data availability in some cases
 - Restraint use rates
 - Fatalities attributed to alcohol use and fatalities by road user type
 - Transport demand and exposure indicators
 - Imputation where value missing – mean value of countries with similar road safety and socio-economic characteristics
Data analysis methodology

• Two-step modeling approach
 • Estimation of composite variable for each layer
 • Development of regression model by correlating road safety outcomes with composite variable
 • Other considerations
 • Previous year fatality rate
 • GNI per capita
 • Country grouping by socio-economic characteristics

• Modeling assessment
 • Mean percentage prediction error – 15%
 • More robust for countries with lower fatality rates
 • Model cross-validated with subset of full data set
The project Safe Future Inland Transport Systems (SafeFITS) aims to facilitate knowledge-based transport policy decision-making related to reducing road traffic injuries. It was planned with the primary objective to assist governments and decision makers, both in developed and developing countries, to decide on the most appropriate road safety policies and measures in order to achieve tangible results in improving road safety.

In 2010, the United Nations General Assembly proclaimed the Decade of Action for Road Safety 2011-2020. Its goal is to stabilize and reduce the forecasted level of road traffic fatalities globally by increasing road safety activities at the national, regional and global levels. The SafeFITS project supports United Nations Member States in achieving the goals and targets outlined in Global Plan for the Decade of Action as well as in the 2030 Agenda for Sustainable Development:

- SDG target 3.6, which aims to reduce global road traffic deaths and injuries by 50% by 2020
- SDG target 11.2, which aims to provide access to safe, affordable, accessible and sustainable transport systems for all by 2030

The SafeFITS model is based on historical road safety data and relationships between several road safety parameters, and provides information on different road safety scenarios.

The SafeFITS application provides a user interface for the exploration of the results of measures and interventions that a country could adopt in order to reduce the fatalities in the near future.

The SafeFITS tool includes three complementary modules, all serving very common purposes in road safety policy analysis:

- An intervention analysis module, to allow the user to forecast the safety effects of a specific road safety measure or intervention for a given country and time period, all other things being kept constant.
- A forecasting module, to allow the testing of combined scenarios of interventions (measures and programmes) at national level.
- A benchmarking module, to allow the user to benchmark a country against other countries, by comparing the road safety outcomes in relation to the basic road safety indicators, and by identifying the priority areas that the country should focus on for improving its road safety.

The SafeFITS Project was implemented with the financial support from the International Road Transport Union (IRU).
User Manual

Welcome to the SafeFITS application

Congratulations, you are running the application. There are four tabs on the top navigation bar:

- **A. Introduction**: Provides background information on SafeFITS development, as well as a disclaimer for the use of the results of the model and these user guidelines.
- **B. Benchmark**: Provides an overall view of the database, specifically where a country stands in terms of policy inputs to the SafeFITS model with respect to other countries at a global level or with respect to countries in similar socio-economic circumstances.
- **C. Forecast**: For the country that was selected in the previous step, users can choose three distinct groups of interventions and view tables and plots for the resulting projected fatality rates for the forecasting period. When users change input parameters, the changed values in each intervention group are highlighted with the same colour, which is also the colour of the curve in the line graph. The graph itself shows the result of the model with an uncertainty band also plotted, which ranges from +/- 30 per cent in 2031 - i.e. the final forecast year - to +/- 0 per cent in 2013 - i.e. the baseline year.

Figure 1. Screenshot of Forecast tab
Definitions

Definitions of indicators

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNI per capita</td>
<td>The Gross National Income (GNI) per capita is the US dollar value of a country’s final income in a year divided by its population.</td>
</tr>
<tr>
<td>Population</td>
<td>Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.</td>
</tr>
<tr>
<td>Population < 15 y.o. (%)</td>
<td>Indicates the number of inhabitants aged below 15 years old as a percentage of the total population of the country.</td>
</tr>
<tr>
<td>Population > 65 y.o. (%)</td>
<td>Indicates the number of inhabitants aged over 65 years old as a percentage of the total population of the country.</td>
</tr>
<tr>
<td>Urban population (%)</td>
<td>Indicates the number of inhabitants living in urban areas as a percentage of the total population of the country.</td>
</tr>
<tr>
<td>National road safety strategy</td>
<td>The variable provides information on whether a road safety strategy at national level exists and is implemented in the country (yes / no / partially implemented).</td>
</tr>
<tr>
<td>Funded strategy</td>
<td>The variable indicates whether the national road safety strategy is funded (yes / partially funded / no).</td>
</tr>
<tr>
<td>Fatality reduction target</td>
<td>The variable indicates whether the national road safety strategy defines specific quantified targets concerning the reduction of road traffic fatalities (yes / no).</td>
</tr>
<tr>
<td>Road network density</td>
<td>The variable indicates the ratio of the length of the road network per 1 km² of the total area of the country.</td>
</tr>
<tr>
<td>Motorways (%)</td>
<td>The variable indicates the length of the motorways as a percentage of the total road network length. Motorways are considered the roads, specifically designed and built for motor traffic, which do not serve properties bordering on it, and which (a) are provided, except at special points or temporarily, with separate carriageways for the two directions of traffic, separated from each other, either by a dividing strip not intended for traffic, or exceptionally by other means, (b) do not cross all level with any road, railway, or tramway track, or footpath, (c) are especially sign-posted as motorways and are reserved for specific categories of road motor vehicles.</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 45 entries
Disclaimer

The SafeFITS model was developed on the basis of the most recent and good quality data available internationally, and by means of rigorous statistical methods. However, as always, data and analytical methods have limitations, which should be kept in mind when using the model:

- **The fatality data used for the model development are in some cases estimated numbers, and in all subject to under-reporting (the degree of which is mostly unknown, and likely to vary between countries).**
- **Missing values were addressed by imputation**, in order to be able to develop the model. These missing values were replaced by the regional known mean value. Indicators related to exposure (e.g. percentage of motorists of total road network) and road safety performance (e.g. protective systems use rates) had the most missing values, which concerned at greater extent the less developed countries (mostly African and Asian). Thus, the outcome in these countries may be more sensitive to indicators change in the testing of such interventions.

Moreover, the optimal use of the model depends on a number of recommendations in order to minimize errors and inaccuracies in the model outcomes:

- The model is based on the extrapolation of short-term developments in the future; this approach was taken as there were not sufficient long time series available for the vast majority of the indicators. **Confidence intervals** for the predictions are calculated to reflect the uncertainty in this extrapolation, on the basis of the mean prediction error of the model, which is considered to increase as the prediction horizon extends. Confidence intervals for the predictions have been calculated based on the mean predicted error (15%) of the model, which is considered to gradually start from 0% on the base year to 20% up to 2030.
- It is recommended to start from the **Base Case scenario**. This aims to provide a baseline country forecast of road safety outcomes in a case where the situation remains unchanged (with no new developments in road safety management and with the same programmes and interventions that will be implemented in the future), and where only economic developments are being taken into account. This scenario is a reference point for the effect of their planned programmes and interventions (scenarios).
- The model included as many of the available indicators as possible in order to allow the testing of various scenarios and care was taken to account as much of the correlation between indicators as possible. However, some of the indicators may be still correlated, and this may affect to a small extent the prediction estimates. Most importantly, the effects of interventions do not reflect the unique contribution of each separate intervention. It is strongly recommended to test combinations of "similar" interventions (e.g. several vehicle standards, several types of enforcement or safety equipment use rates) and always consider "what else would be likely to change, together with a given change?" The cumulative effect of "similar" indicators is more likely to accurately reflect true effects than testing one single indicator.
- Relatedly, the model has been calibrated only for changes in interventions within historical ranges. Based on historical data and knowledge of policy-making processes, users should reflect on the reasoning behind projected future interventions when applying the model.
- The model may not fully capture the effects on countries with very particular characteristics such as very low GDP, or a very high share of motorcycle or cyclist fatalities. Although every effort was made to customize the model for different geographical or geopolitical groups, as well as for such particularities, the available data in the international databases and the available information in the literature were not sufficient to allow for such customization.
- The outcomes in developing countries are expected to be more sensitive to indicators change in the testing of interventions, than developed ones. There are several industrialized countries that already have very high values on all indicators, and their GDP is expected to keep
Benchmark – edit base case, compare against country cluster
Benchmark – compare Transport Demand and Exposure indicators

Base Year (2013)
General Characteristics
- Population in 2013: 10,514,272
- Area: 78,870
- GNI per capita: 19,170
- GDP per capita: 19,590.7
- Economy and Management
 - Population < 15 y.o. (%): 14.7
 - Population > 65 y.o. (%): 24
 - Urban Population (%)

Transportation Network Density

Percentage of Motorways

Use of the SafeFITS app is subject to terms of use. Please read them here.
Forecast – change intervention year
Report Options
The SafeFITS app has some options that are considered useful for the reporting.
Note that it might take a while to generate the report.
- Include the General Characteristics benchmarking plots
- Include the Economy and Management benchmarking plots
- Include the Transport-related related benchmarking plots
- Include the model parameters
- Include the forecasting plots

Document Options
You can choose one of the following options for the plot.
Note that it might take a while to generate the report.

Document format
- PDF
- HTML
- Word

Generate report
Model limitations and recommendations

• Model developed with best available data
 • But data missing for some countries – imputed using cluster averages where necessary
 • Outcomes for countries with very particular characteristics (eg, low GDP, high modal share of motorcycles) may not be properly captured

• Output based on extrapolation of short-term developments
 • Take into account confidence intervals!
 • Use base case scenario as reference point
 • Test combinations of similar interventions – what would be likely to change together?
 • Note when changes or interventions are outside of historical norms – model not calibrated for these inputs

• Model currently based on 2013 data – to be updated with 2016 WHO data as published this fall
Suggestions?
Comments?

Contact UNECE

stat.trans@unece.org