Conventional Vessels and Marine Autonomous Surface Ships – A Love Marriage?

Autonomous Shipping in inland navigation 2018
Organized jointly by UNECE and De Vlamse Waterweg nv

14th February 2018 | Geneva, Switzerland

M Baldauf
mbf@wmu.se

RA Mehdi
rm@wmu.se

T Fonseca
tf@wmu.se

M Kitada
mk@wmu.se
Agenda

- Definitions & Terms of Reference
- Background
- WMU’s Contribution to the MASS sector
- Sample of Ongoing MASS-SCC Study
- Experimental Design
- Selected Preliminary Results
- Discussion
Definitions & Terms of Reference

- **Autonomous**
 - Systems can steer the ship and make decisions about any change in control settings without human intervention
 - The use of Artificial intelligence (AI) can deliver the necessary decision supporting tools
 - May be manned or unmanned

- **Unmanned**
 - No crew physically on-board
 - May be autonomous or non-autonomous

- **MASS – Maritime Autonomous Surface Ships**
 - IMO’s terminology, used further in current study
Background: Technology Enablers & Opportunities for MASS

Marine technology for AUVs: Improved fuel, propulsion & engine systems, navigation & control systems, communication systems, sensor systems, cargo-handling systems

Ship design & construction of AUVs: Optimized hull design, improved EEDI with reduced crew space requirements, optimized design for more extreme sea-states, stability redesigns, novel hull forms (e.g. SWATHs)

Ship-side ship operations: Wider weather windows & more extreme weather conditions, more complex operations in harsher environments

Shore-side shipping operations: Improved shore-side control & monitoring, communication, reality & realism, training & education technology for controllers, automation in hinterland connections
Background: Legal Instruments

- Questions over the adequacy of international instruments in the era of MASSs
 - Expected changes to SOLAS, MARPOL, COLREGS, STCW, MLC, etc.
 - Additions or revisions?
 - Timing?
 - The role of Risk-Based Design & Goal-Based standards

- National jurisdictions pressing ahead with design, development & testing of MASSs
 - Feedback & results can provide valuable insight for international rule-making process

Rolls-Royce concept for an autonomous cargo ship. Credit: Rolls-Royce
WMU’s Contribution to the MASS Sector

- ITF Project
 - Exploring the impacts of autonomy on labour markets by 2040
 - Job profiling, predictions of unemployment
 - Mapping & comparison of autonomous technology across different transport modes

- Multi-disciplinary book publication
 - Covers topics including:
 - Ship Design & Construction
 - Navigational Safety, Shore-side Control & Data Exchange
 - Environmental Protection & Energy Efficiency
 - The Human Element & Labour Market
 - Security & Cybersecurity
 - Legal & Regulatory Challenges
 - 50+ chapters with contributors from academia & industry
WMU’s Contribution to the MASS Sector

Professor Jens-Uwe Schröder-Hinrichs
Germany
PhD Safety Science

Adrienne Mannov
USA/Denmark
PhD Social Anthropology

Xiaoning Shi
China/Germany
PhD Maritime Economics

Khanissa Lagdami
France/Marocco
PhD Law of the Sea

Tiago Fonseca
Portugal
PhD Engineering and Management

US Navy ‘Sea Hunter’ Concept.
Credit: Globalnews.ca
Scope of Study

- Maritime systems can be sub-divided into 5 sub-systems:
 - Transport means (e.g., vessels of various types, sizes)
 - Workers and drivers (e.g., ship crew including captain, officers, engineers, etc.)
 - Transport paths (e.g., open sea, coastal waters, routeing measures, etc.)
 - Traffic management (e.g., ship reporting systems, vessel traffic service (VTS) systems, shore-based monitoring and control for MASSs, etc.)
 - Organization and administrative components (e.g., IMO, IHO, IALA, national authorities and administrations)

- Current work focuses on interaction between ‘traffic management’ & ‘workers and drivers’
 - Evolutionary needs of control centres & shore-control operators
Scope of Study: Level of Autonomy Under Investigation

<table>
<thead>
<tr>
<th>Manning/Control Levels</th>
<th>Autonomy Levels</th>
<th>L0</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No automation</td>
<td>Decision support</td>
<td>AI can conduct routine operations, but problem solving or deviations are handled by operators. AI initiates, adjusts and terminates functions to maintain status-quo.</td>
<td>AI can solve problems during routine operations. AI initiates, adjusts and terminates functions to maintain, or return system to status quo.</td>
<td>AI can solve emerging problems outside defined status quo by initiating, controlling or terminating various functions. AI can also initiate, control or terminate operations</td>
</tr>
<tr>
<td>Continuous</td>
<td>Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodic</td>
<td>Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td>Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conventional Vessels and MASS – A Wedding out of Love?

Experimental Design – A “Mixed Traffic” Scenario

Data collection in order to:
- describe the fairway's and traffic situation

Open Sea

Data transmission
- Vessel Traffic Services: Information, warning, advice & instruction

Coastal Traffic Zone (TSS, VTS)

River- and Harbour areas (Fairways, Pilot Port-VTS)

Data collection
- RADAR
- Optical Sight
- Hyd.-met. sensors
- VHF – Radio communication

Data analysis:
- Analysis of the current and predicted future traffic by VTSO

Traffic engineering rules and regulations

Radar-, Ships'- and Bearing data processing system and Processing of Long-range-reporting and VHF-Communication
Experimental Design – Conventional Ships and MASS

- Traffic scenario created using AIS/radar data from VTS
 - German Bight taken as base area
 - MASS simulated as 4000-TEU containership
 - 15+ targets
 - Good visibility in daylight
 - Moderate wind (<2 BFT), calm sea-state (2), no current

- Participants asked to take-over the controls of a L2-P.R. MASS for 10 minutes

- Participants asked to repeat scenario – once with traditional bridge controls, once with limited controls

- Participants asked to reach designated point, as safely and efficiently as possible

- Full VTS/ship-ship communication during simulation
Experimental Design

- Research questions
 - What equipment set-up is more suitable for SCCs if the operators:
 - Have a seafaring background?
 - Have a non-seafaring maritime background?
 - How can the navigational performance of seafarers and experienced non-seafaring maritime professionals be compared?

- 2 versions of same scenario – using ‘traditional’ bridge controls & using limited controls

- 2 categories of participants – experienced seafarers (12) & experienced non-seafaring maritime professionals (12)
Preliminary Observations

- Quantitative results comparing safety & efficiency indexes are pending

- Qualitative results provided initial insights –
 - 11 groups managed to avoid accident; 1 seafarer group was involved in a collision
 - No group reached designated point
 - Seafarers formulated long term-strategy before taking action; non-seafarers took over-controls and manoeuvred immediately
 - Seafarers took actions more in line with COLREGs (both groups were familiar with all aspects of COLREGs); non-seafarers more creative in problem solving (‘un-hindered’ by COLREGS)
Discussion

- No significant difference between seafarer vs. non-seafarers
- No significant difference between full-bridge equipment & limited equipment scenarios
- Subtle differences highlight need for quantitative analysis
 - Preliminary analysis indicates that non-seafarers were less efficient, less safe, but more creative
 - Differences in problem-solving highlight need to train shore-control operators in COLREGs
- No concrete conclusion about impact of equipment & control-centre layout
Discussion: Future Work

- **Next steps:**
 - Analyse results quantitatively using safety, efficiency metrics
 - In-depth analysis of post-trial debriefing

- **Further studies to explore**
 - Impact of weather & environmental conditions
 - Impact of fatigue
 - Impact of other MASSs in area
 - Impact of decision-support systems
The work presented in this paper was conducted as part of on-going research which contributes among others to project on further development and implementation of the e-Navigation concept by new and enhanced shore-based applications (TSDG study) funded by Korea Research Institute Ships & Ocean Engineering (KRISO). It also contributed to the European project for research and technological development “OpenRisk”, co-financed by the EU – Civil Protection Financial Instrument as project 2016/PREV/26. The authors would also like to thank the ITF Seafarers’ Trust for providing project funding to WMU.

A special thank goes to the students of WMU’s MSc course program who participates in the simulation trials.

Thank You!