Proposal for amendments to Regulation No. 110 – CNG/LNG vehicles

The text reproduced below was prepared by The Netherlands proposing the introduction of requirements to UN Regulation No. 110 for the state-of-the-art "CNG compressor" components used in LNG/CNG systems. Modifications to the original text are marked in bold for new characters and strikethrough for deleted characters.

I. Proposal

Insert a new paragraph 4.75. (definition), to read:

"4.75. "CNG compressor" means a device to establish the supply of CNG to the engine by increasing the pressure of the vapour."

Paragraph 8.7., amend to read:

" Insert a new paragraph 18.3.2.9., to read:

"18.3.2.9. CNG Compressor"

Annex 1A, paragraph 1.2.4.5.2., amend to read:

"1.2.4.5.2. CNG Pressure regulator(s): yes/no

CNG Compressor: yes/no"

Annex 1B, paragraph 1.2.4.5.2., amend to read:

"1.2.4.5.2. CNG Pressure Regulator(s):

CNG Compressor "

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Component</th>
<th>Annex</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.</td>
<td>Automatic valve</td>
<td>4A</td>
</tr>
<tr>
<td></td>
<td>Check valve or non-return valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure relief valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure relief device</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(temperature triggered) Excess</td>
<td></td>
</tr>
<tr>
<td>8.5.</td>
<td>Flexible fuel line-hose</td>
<td>4B</td>
</tr>
<tr>
<td>8.6.</td>
<td>CNG filter</td>
<td>4C</td>
</tr>
<tr>
<td>8.7.</td>
<td>CNG Pressure regulator</td>
<td>4D</td>
</tr>
<tr>
<td></td>
<td>CNG Compressor</td>
<td></td>
</tr>
<tr>
<td>8.8.</td>
<td>Pressure and temperature sensors</td>
<td>4E</td>
</tr>
<tr>
<td>8.9.</td>
<td>Filling unit or receptacle</td>
<td>4F</td>
</tr>
<tr>
<td>8.10.</td>
<td>Gas flow adjuster and gas/air mixer,</td>
<td>4G</td>
</tr>
<tr>
<td>8.11.</td>
<td>Electronic control unit</td>
<td>4H</td>
</tr>
</tbody>
</table>
Annex 2B, item 1, amend to read:

"...
Gas injectors²
CNG Compressor²
...
"

Annex 2B, Addendum, insert new items 1.32. to 1.32.2., to read:

"1.32. CNG Compressor
1.32.1. Working pressure(s):¹ ... MPa
1.32.2. Material: ..."

Annex 4D

The title, amend to read:

"Annex 4D Provisions on the approval of the CNG pressure regulator and CNG compressor"

Paragraph 1., amend to read:

"1. The purpose of this annex is to determine the provisions on the approval of the CNG pressure regulator and CNG compressor."

Insert new paragraphs 4. to 5.3.2., to read:

"4. CNG compressor
4.1. The material constituting the CNG compressor which is in contact with the compressed natural gas when operating shall be compatible with the test CNG. In order to verify this compatibility, the procedure in Annex 5D shall be used.
4.2. The materials constituting the CNG compressor which are in contact with the heat exchange medium of the CNG compressor when operating, shall be compatible with that fluid. In order to verify this compatibility, the procedure in Annex 5Q shall be used.
4.3. The component shall comply with the test procedures for the Class of components according to the scheme in Figure 1-1 of paragraph 3 of this Regulation
4.4. The electrical system, if existing, shall be isolated from the body of the CNG Compressor. Isolation resistance shall be > 10 MΩ.
4.4.1. Means shall be provided to ensure safe discharge of static electricity in the compressor.
4.5. The CNG compressor shall be provided with a pressure control device to maintain the pressure within the operating pressure range.
4.5.1. The limitation of the power supplied by the actuating mechanism can be accepted in lieu of pressure control device.
4.5.2. An electronic control system can be accepted in lieu of a pressure control device.
4.5.3. The pressure control device may function by restricting or closing off the inlet to the compressor."
4.5.4. The pressure control device is not allowed to vent natural gas to atmosphere during normal function.

4.6. The CNG Compressor shall be provided with a pressure relief valve to limit the pressure to the maximum safe working pressure of the compressor.

4.6.1. A fuel system pressure relief valve may be used instead of a pump pressure relief valve if, by relieving system pressure, it relieves the pump pressure.

4.7. The CNG compressor is allowed to function before the engine is started or during commanded stop phases to produce required pressure in the fuel system. This function shall be achieved without delivering fuel to the engine if the engine is not running.

4.8 Durability test (continued operation) of the CNG compressor:

The CNG compressor shall be able to withstand 50,000 cycles without any failure when tested according to the following procedure:

(a) Cycle the CNG compressor for 95 per cent of the total number of cycles at room temperature and at the service pressure. Each cycle shall consist of flow until stable outlet pressure has been obtained, after which the gas flow shall be shut off by a downstream valve within 1 s, until the downstream lock-up pressure has stabilized. Stabilized outlet pressures are defined as set pressure ±15 per cent for at least 5 s.

(b) Cycle the inlet pressure of the CNG compressor for 1 per cent of the total number of cycles at room temperature from 100 per cent to 50 per cent of the service pressure. The duration of each cycle shall be no less than 10 s.

(c) Repeat the cycling procedure of (a) at 85 °C, 105 °C or 120 °C, as applicable, at the service pressure for 1 per cent of the total number of cycles.

(d) Repeat the cycling procedure of (b) at 85 °C, 105 °C or 120 °C, as applicable, at the service pressure for 1 per cent of the total number of cycles.

(e) Repeat the cycling procedure of (a) at -40 °C or -20 °C, as applicable, and 50 per cent of service pressure for 1 per cent of the total number of cycles.

(f) Repeat the cycling procedure of (b) at -40 °C or -20 °C, as applicable, and 50 per cent of service pressure for 1 per cent of the total number of cycles.

(g) At the completion of all tests indicated in subparagraphs (a), (b), (c), (d), (e) and (f) above, the CNG compressor shall be leak proof (see Annex 5B) at the temperatures of -40 °C or -20 °C, as applicable, and at room temperature and at the temperature of 85 °C, 105 °C or 120 °C, as applicable.

5. Classification and test pressures

5.1. The part of the CNG compressor which is in contact with the pressure of the container is regarded as Class 0.

5.1.1. The Class 0 part of the CNG compressor shall be leak-proof (see Annex 5B) at a pressure up to 1.5 times the working pressure (MPa) with the outlet(s) of that part closed off.
5.1.2. The Class 0 part of the CNG compressor shall withstand a pressure of up to 1.5 times the working pressure (MPa).

5.1.3. The Class 1 and Class 2 part of the CNG compressor shall be leak-proof (see Annex 5B) at a pressure of up to twice the working pressure.

5.1.4. The Class 1 and Class 2 part of the CNG compressor shall withstand a pressure of up to twice the working pressure.

5.1.5. The Class 3 part of the CNG compressor shall withstand a pressure of up to twice the relief pressure of the pressure relief valve, on which it is subject.

5.2. The part of the CNG compressor which is in contact with a pressure higher than 26 MPa is regarded as Class 6.

5.2.1. The Class 6 part of the CNG compressor shall be leak-proof (see Annex 5B) at a pressure of up to 1.5 times the working pressure (MPa) declared by the manufacturer with the outlet(s) of that part closed off.

5.2.2. The Class 6 part of the CNG compressor shall withstand a pressure of up to 1.5 times the working pressure (MPa) declared by the manufacturer.

5.2.3. The part of the CNG compressor that is in contact with a pressure below 26 MPa is classified as per Part I, Section 3, of this Regulation.

5.3. The CNG compressor shall be so designed as to operate at the temperatures as specified in Annex 5O.

5.3.1. Where the CNG compressor is cooled by inclusion in the engine coolant circuit it shall be considered as engine mounted in Annex 5O.

5.3.2. Where the CNG compressor is using heat exchange fluids, the non metallic parts in contact with the fluid shall comply with Annex 5Q.

II. Justifications

1. This document is intended to serve as a discussion paper for the experts to investigate the development of requirements for the “CNG compressor” component type.

2. LNG has about half the energy density of diesel which constrains the range of LNG vehicles. In order to increase the capacity of LNG tanks, the LNG can be stored at lower temperature to increase its density. This reduces its saturation pressure, so a compressor is necessary to deliver fuel to the engine at a suitable pressure.

3. In addition, LNG suppliers’ bulk LNG storage is typically at 1 bar or less and close to -162 °C. This allows to store LNG for longer periods before the LNG warms and vents methane to the atmosphere. However, this requires complex systems to warm LNG to a suitable temperature for dispensing to vehicles requiring pressures ranging from 6 to 12 bar and differing between vehicles. Some LNG suppliers do not provide such systems, meaning systems must be provided on vehicles to raise the pressure to that suitable for the engine’s requirements.

4. Also in CNG engine systems we see that the working pressure on the injectors is more and more going into higher working pressures than the storage pressure in the CNG cylinders.

6. In UN Regulation No. 110, there are no requirements for CNG compressors, nor the possibility to certify such components.

7. By introducing the above given requirements, The Netherlands aims to make this technology available and, at the same time, ensuring an adequate safety level.