Informal Working Group ACSF

ACSF of Category C
Activities of the IWG ACSF

3 meetings for ACSF of category C since the 84th session of GRRF

• 24th Oct. 2017 Meeting in Solihull, UK
 (only Contracting Parties)

• 17th Nov. 2017 Webex Conference

• 22nd – 24th Nov. 2017 IWG ACSF Meeting in Bonn, GER
Activities of the IWG ACSF

Following major issues have been solved within the IWG ACSF:

a) reaction time value
 • minimum distance (S_{rear})
 • minimum operation speed (V_{min})
 • critical situation (S_{critical})

b) Test target (L3e vehicle)

c) Type approval test requirements
a) reaction time value
a) reaction time value
- State of discussion

- Already in 84th session of GRRF the IWG had a fundamental consensus regarding the principles of
 - minimum distance (S_{rear})
 - minimum operation speed (V_{smin})
 - critical situation (S_{critical})

- The remaining discussion points were:
 - When will the reaction of the driver in the rear vehicle start (somewhere between activation of the direction indicators and the start of the lane change manoeuvre)?
 - Which reaction time component value shall be take into the calculation (0.4 or 1.2 s after start of the lane change manoeuvre)?
a) reaction time value
- Simulation on test track done by BASt

- Braking starts 0.4 s after start of LCM with 3 m/s²
- Remaining safety gap = 1 s

\[
\begin{align*}
V_{\text{ACSF}} &= 80 \text{ km/h} \\
V_{\text{rear}} &= 130 \text{ km/h} \\
S &\approx 60\text{m} \ (S_{\text{critical}})
\end{align*}
\]
a) reaction time value
- continuous lateral movement

• The driver in the rear vehicle can see the flashing direction indicators of the ACSF car at least 3 s before the start of the lane change manoeuvre.

• The IWG ACSF came to the conclusion, that the lateral movement of the ACSF car to the lane marking in combination with the flashing direction indicators is a clear signal to the driver in the rear vehicle that the ACSF vehicle will change the lane.

• To have a clear visible lateral movement it is important, that the ACSF vehicle is not already driving closed to the lane marking at the beginning of the lane change procedure.

• Therefore requirements for a continuous lateral movement and lane centering were added.
a) reaction time value

- continuous lateral movement

• new § 5.6.4.6.4.
The lateral movement of the vehicle towards the intended lane shall not start earlier than 1 s after the start of the lane change procedure. Additionally the lateral movement to approach the lane marking and the lateral movement necessary to complete the lane change manoeuvre, shall be completed as one continuous movement.

• new § 5.6.4.1.2.
When the ACSF of Cat. C is activated (stand by) the system shall aim to center the vehicle in the lane. [...]
a) reaction time value
- continuous lateral movement

- The mandatory continuous lateral movement achieves that we have a total reaction time of at least 1.4 s, which is comparable to the AEBS reaction time (approximately 1 – 2 s before LCM + 0.4 s after LCM).
a) reaction time value
- conclusion

- In summary the IWG ACSF came to the conclusion that due to the mandatory continuous lateral movement a value of 0.4 s as the reaction time component after the lane change manoeuvre has started is a reasonable value.

- 0.4 s shall be used in the formula as t_B

\[
S_{critical} = (V_{rear} - V_{ACSF}) \cdot t_B + \frac{(v_{rear} - v_{ACSF})^2}{2 \cdot a} + V_{ACSF} \cdot t_G
\]

\[
V_{smin} = a \cdot (t_B - t_G) + V_{app} - \sqrt{a^2 \cdot (t_B - t_G)^2 - 2 \cdot a \cdot (V_{app} \cdot t_G - S_{rear})}
\]
b) Test target (L3e vehicle)
b) Test target (L3e vehicle)
- continuous lateral movement

- Sensor performance shall be tested at the worst case scenario, which is a motorcycle (L3e) coming from the rear
- Unfortunately no standardized test target for L3e vehicle is available
- IWG ACSF agreed to following solution:

new Annex 8, § 3.5.5.1

For the approaching vehicle in the test a type approved high volume series production L3 motorcycle with an engine capacity not exceeding 600 ccm without front fairing nor windscreen shall be used.

(until a standardized test target is defined)

Source: StVO § 39
c) Type approval test requirements
c) Type approval test requirements
 - Test overview (7 tests)

1) Lane change functional test
2) Minimum activation speed test V_{min}
3) Overriding test
4) Lane change procedure suppression test
5) Sensor performance test
6) Sensor blindness test
7) Engine start/run cycle test
c) Type approval test requirements
 - General test requirements

- Straight test track with
 - at least two lanes,
 - same direction of travel,
 - road markings on each side of the lanes

- Vehicle test speed defined in each test as V_{test}
 - Based on minimum specified speed V_{min}
 - Assumed max. speed of approaching vehicle $V_{\text{app}} = 130$ km/h (*)

- Test requirements must be fulfilled in whole speed range
 - Demonstration to satisfaction of technical service (appropriate documentation)

(*) If not otherwise specified in test
c) Type approval test requirements

- (1) Lane change functional test

Objective
Verification lane change procedure

Test procedure

\[V_{test} = V_{smin} + 10 \text{ km/h} \]

- Activation ACSF of Category C (standby mode) by driver

- Approaching vehicle passes vehicle under test entirely

- Lane change procedure initiated by driver (indicator)

- Recording lateral acceleration & lateral jerk

- Repetition of test: 2x
c) Type approval test requirements
- (1) Lane change functional test

Objective: Verification lane change procedure

Test fulfilled:

- Min. 1 s
- 3 - 5 s
- Max. 5 s (*)
- Max. 0.5 s

One continuous movement, lateral acceleration max. 1 m/s², lateral jerk max. 5 m/s³

Information provided to driver indicating LCP on-going

(*) Max. 5 s for M₁, N₁ and max. 10 s for M₂, M₃, N₂, N₃
c) Type approval test requirements
- (2) Minimum activation speed test V_{smin}

Objective
Verification no system activation below specified minimum speed

Test procedure

$V_{test} = V_{smin} - 10 \text{ km/h}$

- Activation ACSF of Cat. C (standby mode) by driver
- Approaching vehicle passes vehicle under test entirely
- Lane change procedure initiated by driver (indicator)

Test fulfilled
Lane change manoeuvre is not performed.
c) Type approval test requirements
- (2) Minimum activation speed test \(V_{smin} \)

Objective
Verification no system activation below specified minimum speed

Test procedure

\[V_{test} = V_{smin} \pm 10 \text{ km/h} \]

Additional testing
In case \(V_{smin} \) is calculated based on country specific general maximum speed other than 130 km/h:

- In addition test procedure with \(V_{test} = V_{smin} - 10 \text{ km/h} \)
 Test fulfilled: Lane change procedure *is not* performed.

- In addition test procedure with \(V_{test} = V_{smin} + 10 \text{ km/h} \)
 Test fulfilled: Lane change procedure *is* performed.

Simulation country of operation allowed.

Detection country of operation and knowledge of country specific general maximum speed limit shall be demonstrated to technical service.
c) Type approval test requirements
- (3) Overriding test

Objective
Verification overriding force needed by driver

Test procedure

\[V_{\text{test}} = V_{\text{sm}} + 10 \text{ km/h} \]

- Driver firmly maintains steering control in straight direction
- Measurement force applied by driver on steering control
- Repetition of test: 2x

Test fulfilled: Measured overriding force \(\leq 50 \text{ N} \)
c) Type approval test requirements

- (4) Lane change procedure suppression test

Objective
Verification conditions to suppress lane change procedure

Test procedure

\[V_{test} = V_{smin} + 10 \text{ km/h} \]

Test repeated for following conditions, which shall occur before lane change manoeuvre has started:

- **Driver’s actions:**
 - removed hands from steering control and hands-off warning initiated
 - manual deactivation direction indicator lamps
 - overrides system
 - switches system off

- **Vehicle speed reduced to** \(V \leq V_{smin} - 10 \text{ km/h} \)

- **Begin lane change manoeuvre \(\geq 5 \text{ s} \)**

Test fulfilled: Suppression lane change procedure in each test case above
c) Type approval test requirements
- (5) Sensor performance test

Objective
Verification of minimum distance Srear declared by manufacturer

Test procedure

\[V_{test} = V_{smin} + 10 \text{ km/h} \]

\[V_{app} = 120 \text{ km/h} \]

\[S_{rear} \]

Approaching vehicle
- Type approved high volume series production L3 motorcycle
- Engine capacity ≤ 600 cm³
- w/o front fairing nor windscreen
- Shall aim to drive middle of lane

Source: StVO § 39
c) Type approval test requirements
- (5) Sensor performance test

Objective
Verification of minimum distance S_{rear} declared by manufacturer

Test procedure

\[V_{test} = V_{smin} + 10 \text{ km/h} \]

\[V_{app} = 120 \text{ km/h} \]

- Distance rear end test vehicle and front end of approaching vehicle measured (e.g. differential GPS)
- Value the system detects approaching vehicle noted

Distance measured

Test fulfilled:
System detects approaching vehicle latest at distance declared by manufacturer S_{rear}
c) Type approval test requirements
- (6) Sensor blindness test

Objective
Verification system detection sensor blindness

Test procedure

\[V_{\text{test}} = V_{\text{smin}} + 10 \text{ km/h} \]

Making rear sensor(s) blind
- Means agreed between vehicle manufacturer and technical service (documented in report)
- Standstill (no new engine start/ run cycle!)

Continued test procedure
- Vehicle speed \(V_{\text{test}} = V_{\text{smin}} + 10 \text{ km/h} \)
- Initiation lane change procedure
c) Type approval test requirements
- (6) Sensor blindness test

Objective
Verification system detection sensor blindness

Test fulfilled

- System detects sensor blindness
- System provides warning to driver
- Lane change manoeuvre is not performed

Additionally
Vehicle manufacturer demonstrates to satisfaction of technical service requirements also fulfilled under different driving scenarios. May be achieved by documentation.
c) Type approval test requirements
 - (7) Engine start/ run cycle test – Phase I

Objective
Verification default-off status

Test procedure

Engine start/ run cycle

\[V_{test} = V_{smin} + 10 \text{ km/h} \]

- **No** activation ACSF of Cat. C (off mode) by driver
- Approaching vehicle passes vehicle under test entirely
- Lane change procedure initiated by driver (indicator)

Test fulfilled
Lane change manoeuvre is not performed.
c) Type approval test requirements
- (7) Engine start/ run cycle test – Phase II

Objective
Verification required object detection for system activation

Test procedure
Engine start/ run cycle

\[V_{\text{test}} = V_{\text{smin}} + 10 \text{ km/h} \]

Activation ACSF of Cat. C (standby mode) by driver

No approaching vehicle!

Lane change procedure initiated by driver (indicator)

Test fulfilled
Lane change manoeuvre is not performed.
c) Type approval test requirements
- (7) Engine start/ run cycle test – Phase III

Objective
Verification lane change enabling conditions

Test procedure

\[V_{test} = V_{smin} + 10 \text{ km/h} \]

- Type approved high volume series production vehicle

Source: StVO § 39
c) Type approval test requirements
- Engine start/ run cycle test – Phase III

Objective
Verification lane change enabling conditions

Test procedure

\[V_{test} = V_{smin} + 10 \text{ km/h} \]

\[S_{\text{rear}} \]

- Distance rear end test vehicle and front end of approaching vehicle measured (e.g. differential GPS)
- Value the system detects approaching vehicle noted

Test fulfilled:
System detects approaching vehicle latest at distance declared by manufacturer \(S_{\text{rear}} \)
Thank you for your attention!

Federal Ministry of Transport and Digital Infrastructure

Invalidenstraße 44
D-10115 Berlin

www.bmvi.de