

Economic and Social Council

Distr.: General 7 December 2016

Original: English

Economic Commission for Europe

Inland Transport Committee

Working Party on Inland Water Transport

Working Party on the Standardization of Technical and Safety Requirements in Inland Navigation

Fiftieth session Geneva, 15-17 February 2017 Item 4 (c) of the provisional agenda Inland waterways infrastructure: Inventory of Most Important Bottlenecks and Missing Links in the E Waterway Network (Resolution No. 49, revised)

Amendments to the Inventory of Most Important Bottlenecks and Missing Links in the E Waterway Network (Resolution No. 49, revised)

Note by the secretariat

I. Mandate

1. This document is submitted in line with Cluster 5: Inland Waterway Transport, para. 5.1 of the programme of work 2016-2017 (ECE/TRANS/2016/28/Add.1) adopted by the Inland Transport Committee at its seventy-eighth session on 26 February 2016.

2. The Working Party on the Standardization of Technical and Safety Requirements in Inland Navigation (SC.3/WP.3) at its forty-ninth session asked the secretariat to prepare draft amendments to the Inventory of Most Important Bottlenecks and Missing Links in the E Waterway Network (Resolution No. 49, revised) for its fiftieth session in February 2017 (ECE/TRANS/SC.3/WP.3/98, para. 28).

3. Draft amendments to Resolution No. 49 made by the secretariat on the basis of the third revision of the Inventory of Main Standards and Parameters of the E Waterway Network (Blue Book) adopted by the Working Party on Inland Water Transport at its sixtieth session (ECE/TRANS/SC.3/203, para. 42) are reproduced below.

II. Amendment proposal to Part III of the Annex to the Inventory of Most Important Bottlenecks and Missing Links in the E Waterway Network (Resolution No. 49, revised)

A. Belarus

Strategic bottlenecks

- 4. In paragraphs 1 and 3 replace 1.60 by 1.70.
- 5. In paragraph 4 replace 1.30 by 1.40.
- 6. In paragraph 2 for the existing text, *substitute*

Dneprovsko-Bugskiy Canal (E 40) from Kobrin to Pererub — low maximum draught (1.70 m); upgrading of locks to class Va is envisaged.

7. *Add* a footnote in the end of paragraph 2

Upgrading of lock No. 3 Ragodosch was started in 2015, the startup is planned for 2019; upgrading of lock No. 4 Ovzichi is planned for 2019-2020.

B. Belgium

Basic bottlenecks

- 8. *Add* a new paragraph 4 and *renumber* the existing paragraphs 4-7 accordingly Plassendale-Nieuwpoort Canal (E 02-02-01).
- 9. In paragraph 5 *delete* up to 7 m.

Strategic bottlenecks

10. Add new paragraphs 1 to 5 and renumber the existing paragraph 1 as 6

1. Condé-Pommeroeul Canal (E 01) — re-opening of a section currently not in service.

2. Nimy-Blaton-Peronnes Canal (E 01) — upgrading from class IV to class Va is envisaged.

3. Canal du Centre (E 01), Obourg Lock — construction of a new class Va lock is envisaged.

4. Charleroi-Bruxelles Canal (E 01), Marchienne, Viesvilles and Gosselies Locks — construction of new class Va locks is envisaged.

5. Meuse (E 01) — construction of class VIb locks is envisaged at Ivoz-Ramet and Ampsin-Neuville.

11. Add a new paragraph 7 and renumber the existing paragraph 2 as 8

Canal de Lanaye (E 01) — construction of a class VIb lock is under way.

12. Add a new paragraph 9 and renumber the existing paragraph 3 as 10

Roeselare-Leie Canal (E 02-04), Roeselare-Ooigem section — improvement of waterway for class Va. Project is under study.

13. Add new paragraphs 11 to 14 and renumber the existing paragraph 4 as 15

11. Charleroi-Bruxelles Canal (E 04), Lembeek-Bruxelles section — upgrading the waterway and the locks to class Va. Project is under study.

12. Haut Escaut (E 05) on section Bléharies-Hérinnes – Tournai passage — upgrading to class Va.

13. Boven-Schelde (E 05), Kerkhove-Asper section — renewal of weirs and upgrading lock capacity to class Vb. Project is under study.

14. Boven-Zeeschelde (E 05) on section Gent circular canal-Baasrode — upgrading from class IV to class Va. Project is under study.

C. Bosnia and Herzegovina

Basic bottlenecks

14. *Replace* 507.0-174.8 *by* 515.2-178.0.

D. Croatia

Basic bottlenecks

15. For the existing text, *substitute*

1. Drava (E 80-08) from 0 km to 14 km - 3 critical sections with inadequate fairway parameters.

2. Sava (E 80-12) section between Sisak and Brčko — upgrading from class III to class IV.

Strategic bottlenecks

16. For the existing text, *substitute*

1. Danube (E 80) from 1,433.1 km to 1,295.5 km — 17 critical sections with inadequate fairway parameters.

2. Sava (E 80-12) section between Brčko and Serbian/Croatian State border — upgrading from class IV to class Va.

E. Czech Republic

Strategic bottlenecks

17. For the existing text, *substitute*

1. Elbe (E 20) from Mělník to Chvaletice — narrow width of lock gates (12.00 m); from Chvaletice to Pardubice the construction of a lock at Přelouč is necessary.

2. Vltava (E 20-06) from Mělník to Praha — low height under bridges (4.50 m) and narrow width of lock gates (11.00 m).

F. France

Missing links

18. In footnotes 3 and 4, for the existing text, *substitute*

³ The secretariat was informed by the Government of France that the Seine-Schelde connection project had been modified.

⁴ The secretariat was informed by the Government of France that the project concerning the Saône-Moselle Link/Saône-Rhine Link has been abandoned.

Basic bottlenecks

19. *Delete* the second sentence.

Strategic bottlenecks

20. *Substitute* the existing paragraph 1 *by* new paragraphs 1-6 and *renumber* the existing paragraphs 2 and 3 *as* 7 and 8

1. Condé-Pommeroeul Canal $(E\ 01)$ — increasing the water depth up to 3.50 m is under consideration in the framework of the project on reopening this Canal for navigation.

2. Dunkerque-Escaut link and Escaut (E 01) up to Condé — lifting of bridges up to 5.25 m is completed, lifting up to 7.00 m is envisaged.

3. Deûle and Deûle Canal (E 02) from Quesnoy/Deûle to Lille — upgrading to class Va is under way, increasing the water depth up to 3.50 m is envisaged, from Lille to Bauvin — lifting of bridges up to 5.25 m is completed, lifting up to 7.00 m is envisaged.

4. Lys Mitoyenne (E 02) — increasing the water depth to 4.50 m is considered.

5. Network Nord Pas-de-Calais (E 02 and E 05) — lifting of bridges and upgrading of links with Belgium to class Va. Lifting of bridges up to 5.25 m is being finalized (summer 2012), lifting up to 7.00 m is envisaged.

6. Rhône-Sète Canal (E 10-04) — works on upgrading to class Va are under way.

G. Germany

Basic bottlenecks

- 21. Delete paragraph 1 and renumber paragraphs 2-6 accordingly.
- 22. Paragraph 4, for the existing text substitute

Berlin region waterways (connection to Westhafen Berlin) — upgrading to classes IV and Vb under way.

23. In paragraph 5, *delete*

to enable navigation of vessels with two layers of containers.

Strategic bottlenecks

24. For the existing text, *substitute*

1. Rhine (E 10) — low fairway depth during dry seasons: from St. Goar to Mainz (1.90 m) and low height under bridges at Kehl/Strasbourg.

2. Rhine-Herne Kanal (E 10-03) — upgrading to class Vb is under way.

3. Dortmund-Ems Kanal (E 13) from 108.3 km to 21.5 km — upgrading to class Vb is under way.

4. Weser (E 14) from 360.7 km to Minden — upgrade to Va under way.

5. Elbe (E 20): middle Elbe from Lauenburg upstream to the border between Germany and the Czech Republic — low fairway depth during dry seasons (1.20 m).

6. Main (E 80) upstream from Würzburg — low fairway depth (2.50 m); project is under way.

7. Danube (E 80) from Straubing to Vilshofen — low fairway depth (2.00 m at LNWL).

8. Danube (E 80) — low height under bridges at Bogen (2,311.27 km) — 5.00 m; at Passau (2,225.75 km) — 5.15 m; upgrading to 7.00 m is necessary.

9. Weser (E 14) — upgrading of Minden and Dörverden Locks is under way.

25. In the end of paragraph 7, add a footnote

Low Navigable Water Level; corresponds to a long-term mean water level reached or exceeded on all but 20 ice-free days per year (approximately between 5 per cent and 6 per cent of the ice-free period).

26. In the end *add* a new section

Other bottlenecks, the elimination of which is anticipated to become economically viable only in the framework of a replacement programme supported by a particular investment scheme:

- 1. Datteln-Hamm Kanal (E 10-01) to the east of the Hamm harbour.
- 2. Neckar (E 10-07) adaptation of fairway width and lock dimensions.
- 3. Dortmund-Ems Kanal (E 13) to the north of the Mittellandkanal.

4. Canals branching off from the Mittellandkanal (E 70-02, 70-04 and 70-06) — low fairway depth and height under bridges, insufficient dimensions of locks.

H. Hungary

Strategic bottlenecks

- 27. In paragraph 1, *replace* 1,810.0 *by* 1,811.0.
- 28. *Add* new paragraphs 3-5

3. Danube (E 80), at HNWL — low height under the road/rail bridge at Dunaföldvár (1,560.55 km) - 8.73 m between pillars II-III and III-IV, respectively. Upgrading to 9.10 m is required.

4. Danube (E 80), at HNWL — low height under the road/rail bridge at Baja (1,480.22 km) — 8.09 m between pillars III-IV and 8.40 m between pillars II-III. Upgrading to 9.10 m is required.

5. Danube (E 80), between 1,811.00-1,433.00 km, the draught of 2.5 m is assured during 180-260 days a year depending on the water level. The project aimed at the elimination of bottlenecks is under way.

I. Italy

Missing links

29. In paragraph 2, *replace* E 91-03 *by* E 91-05.

Basic bottlenecks

30. Replace Cremona by Piacenza.

Strategic bottlenecks

31. For the existing text, *substitute*

1. Veneta Lateral Waterway (E 91) from Marghera to Porto Nogaro — upgrading from class IV to class Va is envisaged.

2. Mantova-Adriatic Sea Canal (E 91-03) from Ostiglia to Baricetta lock — adaptation to class Va is envisaged.

3. Ferrara waterway (E 91-04) from Ferrara to Porto Garibaldi — upgrading to class Va is under way.

J. Lithuania

Basic bottlenecks

32. For the existing text in brackets, *substitute*

 $1.20~{\rm m}$ and $1.50~{\rm m},$ respectively; the depth of 12.5 km fairway stretch in Kaunas is less than 1.20 m.

33. In the end, add a footnote

Nemunas (E 41): insufficient depth of the fairway stretch along 100 km of Nemunas river stretch in the border area and on the territory of the Russian Federation.

K. Netherlands

Basic bottlenecks

34. Delete the existing text.

Strategic bottlenecks

35. Add new paragraphs 9-12

9. Ijsselmeer-Meppel (E 12) — insufficient fairway depth and/or width, the project is under study.

10. Amsterdam-Rijnkanaal (E 11) — removing bottlenecks at the Zeeburg locks (upgrading to class Vlb).

11. Zaan (E 11-01) — adaptation to class Va with regard to fairway depth and/or width — height under the bridges and lock capacity is required.

12. Noordzeekanaal (E 11) — upgrading of sea locks at IJmuiden to class VIc is being studied.

L. Poland

Missing links

36. For the existing text, *substitute*

1. Danube-Oder-Elbe Connection (E 30).

2. Gdansk-Brest Connection (E 40), excluding its existing navigable sections.

M. Republic of Moldova

Basic bottlenecks

37. In paragraph 1, the second part of the sentence, *substitute*

upgrading from class II to class Va is required.

N. Romania

Basic bottlenecks

- 38. For the existing text, *substitute*
 - 1. Prut (E 80-07) from the mouth to Ungheni.
 - 2. Bega Canal (E 80-01-02) up to Timisoara.

Strategic bottlenecks

39. In paragraph 1, for the existing text, *substitute*

1. Danube (E 80) from 845.5 km to 175 km — low fairway depth during dry seasons (below 2.50 m — value recommended by the Danube Commission) at several critical sections, i.e.:

from 845.5 km to 610 km, with fairway depth limited to 1.90-2.50 m for 12-46 days a year;

from 610 km to 375 km, with fairway depth limited to 1.60-2.00 m for 20-40 days a year;

from 375 km to 300 km, with fairway depth limited to 1.40-2.50 m for 61-126 days a year; according to Notice No. 3/08.06.1992 issued by the Romanian River Administration (AFDJ), the navigation on the sector 346 km – 240 km is diverted via Bala-Borcea branch when the depths in Cernavodă are 1.50 m with decreasing tendency;

from 300 km to 175 km, with fairway depth limited to 2.00-2.50 m for 5-32 days a year.

40. In the end of paragraph 2, *replace* 6.90-7.00 m for 10-20 days a year by 7.01 m for 2-16 days a year.

O. Russian Federation

Strategic bottlenecks

41. In footnotes 6-8, for the existing text, *substitute*

⁶ In 2008 a second lock at the Kochetovsky hydraulic complex became operational. To eliminate the insufficient draught, the construction of a low-head hydraulic complex near the Bagaevsky village is being considered.

⁷ Due to the fact that the Tcheboksary Reservoir is not filled up to the project level and that the water level of the Volga River at the Nijniy Novgorod-Gorodets section went down, the depth of 3.50 m at sill of the Gorodetski Lock is only ensured for 2–3 hours a day. To eliminate the insufficient draught, design works were started in 2014 to build a low-head hydraulic complex in the area of Bolshoye Kozino, the startup is planned for 2021.

⁸ The construction of a second parallel lock is in progress. The startup is planned for 2021.

P. Serbia

42. In the beginning *add* a new section

Basic bottlenecks: Begej (E 80-01-02) from its mouth to Serbian/Romanian border — upgrading from class III to at least class Va is required.

Strategic bottlenecks

43. Add paragraphs 5 and 6

5. Sava (E 80-12) from its mouth to the State border — upgrading to at least class Va is required.

6. Tisza (E 80-01) — upgrading from class IV to class Va is under study.

Q. Slovakia

Strategic bottlenecks

44. In paragraph 1, for the existing text, *substitute*

1. Danube (E 80) from Devín (1,880.26 km) to Bratislava (1,867.0 km) — insufficient depth at low water level and insufficient height 8.90 m at locks of Gabčíkovo Hydro Electrical Complex (1,819.3 km). Upgrading is required to 9.10 m. 45. *Add* a new paragraph 3

3. Váh (E 81), from Komárno (0.0 km) to Žilina (240.0 km) — insufficient fairway depth. Canalization of the river and its upgrading to class VIa (Komarno-Hlohovec) and class Va (Hlohovec-Žilina) in conjunction with the construction of new locks, and reconstruction of existing locks, are required.

R. Ukraine

Basic bottlenecks

46. In paragraph 2, *replace* Kilia arm by Kiliiske Mouth.

47. In paragraph 3, *replace* Dnestr by Dnister and Belgorod Dnestrovsky by Bilhorod Dnistrovskyi.