Child safety with respect to vehicle protection and booster seats

- a proposal for a CRF for children > 4yo
The balance of booster and vehicle protection - age group 4-12y

Main safety related aspects:
• Size and proportions
• Pelvic development

All crash situations:
➢ Booster to help provide good fit of vehicle safety belt;
 • Lap belt for avoidance of submarining
 • Shoulder belt for torso retention and head impact protection

Side impacts:
➢ Raise in height for better interaction with vehicle side structure, including Inflatable Curtain

Note: The mechanisms of head injuries in side impacts are similar for adults and children
Real world child safety

There is always a car to help protect the child in a child restraint when traveling!
- Consumer ratings are driving the developments of rear seat protection of all new vehicles.

- Children aged 4 and more benefit from the vehicle safety systems, given they are raised in position using high back boosters.
- Add-on child restraints need to be balanced to the in-vehicle safety design.
- The primary effect of the backrest part of the high-back booster is to help position the child, when needed, in relation to the in-vehicle occupant protection.

➢ From a real world safety perspective it is not optimal for all children to use high back boosters
Protection principles

As for adults, children gain protection by having a **tight connection** to the vehicle.

As for an adult, a child’s head will be **protected by the vehicle side structure**, incl. Inflatable Curtain.

For belt position and lateral support, **comfort covers** can be used.
Real world safety wrt to child safety

The optimal child restraint depends on the child’s size and behavior, the vehicle used and the purpose (and duration) of the trip. Hence, it is important that child seat regulation provides possibility to support optimal real world protection;

- High back boosters for the smallest children only, >4yo
- Acknowledge booster cushions as good protection and the primary choice for the largest children.
Alternative for booster regulation-taking real world safety into account

- Children >6yo, side impact test not included + geometrical compatibility evaluation using a “CRF booster cushion”
- Children ≤6yo, side impact test included + geometrical compatibility evaluation using a “CRF 120cm”.

There is a need for a “CRF 120cm”.
“CRF booster cushion” is being developed by ISO wg1.
Starting point

95 %-ile child of stature 120cm
Shoulder width: 33.3cm
Pelvis width: 29.1cm
Sitting height: 68.0cm

The CRF in FMVSS225 is close to required size, requiring minor adjustments.
Proposed as a starting point.

Booster cushion height 8.0 cm and side structure thickness of approx. 5.0 cm
=> has to be further investigated.
Booster cushion height – further investigation
UN-R129 Phase 2
Concept of Child Safety with Booster Cushion

- **Shoulder height in Sitting**
 - AF05: 530 mm
 - 125cm: 385 mm, 411 mm
 - 130cm: 400 mm, 427 mm
 - 135cm: 415 mm, 445 mm
 - Difference against AF05: 145 mm, 119 mm, 130 mm, 103 mm, 115 mm, 85 mm

- **Sitting height**
 - AF05: 787 mm
 - 125cm: 630 mm, 660 mm
 - 130cm: 645 mm, 680 mm
 - 135cm: 670 mm, 700 mm
 - Difference against AF05: 157 mm, 127 mm, 142 mm, 107 mm, 117 mm, 87 mm

Figures not in scale!
UN-R129 Phase 2
Concept of Child Safety with Booster Cushion
(1) Frontal Impact
As the seat belt path is important for frontal impact, necessary booster cushion height
can be calculated as shown below:

<table>
<thead>
<tr>
<th>Size Range</th>
<th>AF05</th>
<th>125cm</th>
<th>130cm</th>
<th>135cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5%ile</td>
<td>50%ile</td>
<td>5%ile</td>
</tr>
<tr>
<td>Shoulder height in Sitting</td>
<td>530 mm</td>
<td>385 mm</td>
<td>411 mm</td>
<td>400 mm</td>
</tr>
<tr>
<td>Difference of shoulder height</td>
<td>-</td>
<td>145 mm</td>
<td>119 mm</td>
<td>130 mm</td>
</tr>
</tbody>
</table>

Figures not in scale!
UN-R129 Phase 2
Concept of Child Safety with Booster Cushion
(2) Side Impact
As the head position is important for side impact, necessary booster cushion height can be calculated as shown below:

<table>
<thead>
<tr>
<th>Size Range</th>
<th>AF05</th>
<th>125cm</th>
<th>130cm</th>
<th>135cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siting height</td>
<td>787 mm</td>
<td>630 mm</td>
<td>660 mm</td>
<td>645 mm</td>
</tr>
<tr>
<td>Difference of sitting height against AF05</td>
<td>-</td>
<td>157 mm</td>
<td>127 mm</td>
<td>142 mm</td>
</tr>
</tbody>
</table>

Figures not in scale!
UN-R129 Phase 2
Concept of Child Safety with Booster Cushion
(3) Summary and Proposal
To cover the safety of children sitting in booster cushion in both frontal impact and side impact, the necessary cushion height whichever is greater between the two, which is for side impact, should be a requirement for universal booster cushion.

<table>
<thead>
<tr>
<th>Size Range</th>
<th>AF05</th>
<th>125cm</th>
<th>130cm</th>
<th>135cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5%ile</td>
<td>50%ile</td>
<td>5%ile</td>
</tr>
<tr>
<td>Necessory cushion</td>
<td>-</td>
<td>145 mm</td>
<td>119 mm</td>
<td>130 mm</td>
</tr>
<tr>
<td>height for frontal impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necessory cushion</td>
<td>-</td>
<td>157 mm</td>
<td>127 mm</td>
<td>142 mm</td>
</tr>
<tr>
<td>height for side impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures not in scale!
Booster cushion height – further investigation

Need to define appropriate heights of the belt positioning boosters

Could be achieved by correlating the vehicle H-point with the Cr-point in UN Reg.129 test bench.

A possible method could be to install the 5 %-ile female dummy in the UN Reg. 129 test bench and measure the relationship between the dummy’s hip point and the Cr-point in the test bench
Annex – CRF comparison
Proposed design of a "CRF 120" (green) - compared to "CRF FMVSS 225" (grey)

- Extended backrest rearward
- Corner more angled
“CRF 120” positioned in Volvo V40 rear seat

The adjustable backrest adjusted 5° rearward to adjust towards back rest and head restraint in Volvo V40 rear seat.
Comparison “CRF 120” (blue) to “ISO CRF135” (wg1 N1068) (red)

The yellow area represent the dimensions for the 95 %-ile child of stature 120cm
Comparison “CRF 120” (Green) to “ISO CRF135” (wg1 N1068) (red)
Comparison
“CRF 120” (Green) to
“ISO CRF135” (wg1 N1068) (red)
CAD files

CRF120
2014-05-12.stp

CRF120
2014-05-12.CATPar