Telematic Working Group

Bordeaux
03.06.2014
Agenda

- Context
- Project reminder
- Survey
- TP1 profiles
- TP2 Services
- Security – Availability
- Charges
- Information collected in case of accident – Problem of the casual observer
CONTEXT
Historical Context

• Mandate ECE/TRANS/WP.15/AC.1/108/Add.3 (24 October 2007) including 2 parts:
 – I. TERMS OF REFERENCE OF THE INFORMAL WORKING GROUP ON THE USE OF TELEMATICS FOR THE CARRIAGE OF DANGEROUS GOODS
 – II. WORK PROGRAMME OF THE INFORMAL WORKING GROUP ON THE USE OF TELEMATICS FOR THE CARRIAGE OF DANGEROUS GOODS

• 2010 Final version of the « who does what » table (INF.11 of September 2010 of the Join Meeting)
1. Consider what information provided by telematics enhances the safety and security of the transport of dangerous goods and facilitates such transport. In particular, consider who might benefit from the provision of such information and in what way, having regard, inter alia, to: consignors, transport operators, emergency responders, enforcers, regulators;

2. Consider necessary parameters for telematics systems, and examine if existing systems meet these parameters and what further developments might be necessary;

3. Consider the cost/benefit analysis of utilising telematics for the purposes identified above;

4. Consider what procedures/responsibilities might be necessary to monitor the information captured by telematics and how access to data should be controlled; and

5. Consider interfaces and synergy with other systems
Work programme of the informal Working Group (1)

• 1 & 2. Examine national research projects and EC feasibility study
• 3. Verify or examine in what kind of functions in dangerous goods transport telematics facilities might be desirable (also in addition to tracking & tracing) in a multimodal perspective, to improve transport safety or security, each to be examined separately if necessary;
• 4. Verify or examine in which additional, mode-specific functions telematics facilities might be desirable (such as derailment detection, control of Mobile Explosives Manufacturing Units (MEMU) vehicles), to improve transport safety or security, each to be examined separately if necessary;
• 5. Verify or examine who the users of the screened telematics facilities would be (public and private);
• 6. Verify or examine what data and communication and in which form the desired telematics facilities would be needed;
Work programme of the informal Working Group (2)

• 7. Verify or examine to whom the data should be communicated (often several addressees);
• 8. Verify or examine whether, how and where the collected data should be stored and how it should be accessed;
• 9. Verify or examine what kind of regulations should be created and to whom they should be addressed in order to ensure that the necessary data is available for those who need it (e.g. obligation for transport companies to use on-board-units in vehicles);
• 10. Verify or examine if sufficient regulation can be provided in RID/ADR/ADN or if something more is needed in the European Union;
• 11. Verify or examine what kind of complementary standardisation would be needed to ensure interoperability of all regulated facilities and also of on-board-units with other tracking & tracing systems in other sectors;
Work programme of the informal Working Group (3)

• 12. On the basis of items 1-11 above, draft a preliminary concept of appropriate telematics facilities, including possible data centres and their organisation, and a preliminary scope of necessary regulations and standards;

• 13. Draw up a proposal to verify or assess the feasibility of the telematics facilities examined and their cost/benefit for the users;

• 14. Draw up the final description of the telematics facilities that are decided upon;
 ▪ 15. Draw up a proposal for the amendments to ADR/RID/ADN that will be required by the telematics facilities decided upon;
 ▪ 16. Draw up a summary description of necessary standards to complement the regulations.
Telematics System – Overview and Basic Considerations

- Internet
 - Interoperability Interface
 - Central Management Service
 - PSAP / Command & Control centre

- In-House System
- Service Provider

- Trigger (e.g. eCall HGV)
 - External characteristics (e.g. number plate)

Complex standardisation / certification of OBUs and devices to be avoided

Source: Geneva 2013/09/20 AlbrechtConsult GmbH – Aachen – Viersen
General system concept

- Replace access to paper documents with (electronic, machine-to-machine) access to a back-office system
- The back-office service can be provided by the carrier or by a service provider (⇒ many instances of this service – needs addressing)
- Central (mainly) administrative tasks will be located in a central service
- Each transport must uniquely be identified to access data: access credentials = service address + transport ID
- Access credentials can be carried by today’s / future standards for vehicle initiated emergency notification (e.g. eCall HGV)
- There needs to be further central ‘lookup’ service to retrieve access credentials in case of access based on external observations
- Access must be controlled and data protection must be ensured ⇒ up-to-date cryptographic technology needed
- The interface should easily integrate into the existing landscape of Freight & Logistics IT services ⇒ use of widely accepted IT standards (e.g. web services & XML)

Source: Geneva 2013/09/20 AlbrechtConsult GmbH – Aachen – Viersen
Telematics system high-level architecture

- Trusted Party 1 Management Server
- Trusted Party 2 Content Server
- Authorities
- Command & Control Centre (e.g. Emergency Responder)
- Casual observer
- Carrier
- Transport [OBU, if available]
- Trusted Party 1 Management Server

Source: Geneva 2013/09/20 AlbrechtConsult GmbH – Aachen – Viersen
PROJECT REMINDER
Partenaires

<table>
<thead>
<tr>
<th>Partenaire</th>
<th>Partenaire</th>
<th>Effort R&D</th>
<th>Financement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader</td>
<td>Novacom (ETI)</td>
<td>105 HM</td>
<td>25%</td>
</tr>
<tr>
<td>SMEs</td>
<td>FDC</td>
<td>11 HM</td>
<td>30%</td>
</tr>
<tr>
<td>SMEs</td>
<td>M3Systems</td>
<td>30 HM</td>
<td>45%</td>
</tr>
<tr>
<td>SMEs</td>
<td>Geoloc Systems</td>
<td>90 HM</td>
<td>45%</td>
</tr>
<tr>
<td>SMEs</td>
<td>E.RE.CA</td>
<td>43 HM</td>
<td>45%</td>
</tr>
<tr>
<td>SMEs</td>
<td>MD Service</td>
<td>34 H,M</td>
<td>45%</td>
</tr>
<tr>
<td>Total budget:</td>
<td>5,9 M€, funding 1,9 M€ (33%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>20 % ETI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>33 % SME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>29 % R&D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>17 % other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Body</td>
<td>LNE</td>
<td>12 HM</td>
<td>40%</td>
</tr>
<tr>
<td>University</td>
<td>Université de Grenoble</td>
<td>45 HM</td>
<td>100%</td>
</tr>
<tr>
<td>University</td>
<td>CEA LIST</td>
<td>72 HM</td>
<td>40%</td>
</tr>
<tr>
<td>Public Body</td>
<td>CEREMA Dter Sud-Ouest</td>
<td>76 HM</td>
<td>3%</td>
</tr>
<tr>
<td>Public Body</td>
<td>CEREMA Dter Centre-Est</td>
<td>5 HM</td>
<td>13%</td>
</tr>
</tbody>
</table>
Expected Results

• Common modular architecture for all players of Transportation MD with a standardized exchange format that will ensure the independence of each module

• Application Modules
 – Supply chain actors modules
 – Operators Fleet Tracking
 – Local, national and international authorities
 – Emergency Services
 – Infrastructure operators
 – Statistical applications
 – Embedded Modules
 – Devices for road vehicles
 – Terminals for container and trailers
 – Collection and onboard data processing
 – Data transmission
 – Access and control information for the crew

• More users will automatically decrease the cost of the System for each one
General schema
Security principle

Diagram Description:

1. **Request by Vehicle Reference:** The process starts with a request by vehicle reference.

2. **Data:** The data is sent to the Command & Control centre.

3. **Vehicle Identification (V-Id):** The V-Id is sent to the Trusted Party TP1.

4. **Metadata:** The DG-Info and Metadata are sent from Trusted Party TP2 to Trusted Party TP1.

5. **by vehicle reference:** This step is marked as by vehicle reference.

6. **Metadata:** The Metadata is sent from Trusted Party TP1 to the Command & Control centre.

7. **Local Interfaces:** The data is received at the Command & Control centre and sent as V-ID.
Possible processes

- Carrier
- Automatic On board Trigger
- TP1
- TP2
- Authorities
- Emergency Responder / Call center
- Casual Observer
Planning

- 3 years project with a demonstration at the 22nd ITS World Congress in Bordeaux 5 to 9 October 2015

WP1: Gestion de projet
36hm – 1 Juin’2013 -> 31 Mai’2016

WP2: Ananyse fonctionnelle
65hm – Juin’13 -> Juin’14

WP3: Architecture
76hm – Mar’14 -> Nov’14

WP4: Implementations
192hm – Dec’14 -> Sep’15

WP5: Demonstration
39hm – Sep’15 -> Mar’16

WP6: Certification/Securité
82hm – Juin’13 -> Mai’16

WP7: Communication
16hm – Juin’13 -> Mai’16

WP8: Evaluation
17hm – Jan16->Mai16

Date: 29/01/2014
Partners

<table>
<thead>
<tr>
<th>Partner</th>
<th>Main activity</th>
<th>Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novacom (ETI)</td>
<td>Fleet Management</td>
<td>TP1 and Fleet management TP2</td>
</tr>
<tr>
<td>SMEs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDC</td>
<td>GNSS</td>
<td>Guarantee on position</td>
</tr>
<tr>
<td>M3Systems</td>
<td>GNSS/OBU</td>
<td>Guarantee on position</td>
</tr>
<tr>
<td>Geoloc Systems</td>
<td>Software</td>
<td>Low Cost TP2</td>
</tr>
<tr>
<td>E.RE.CA</td>
<td>OBU</td>
<td>OBU provider and Low Cost TP2</td>
</tr>
<tr>
<td>MD Service</td>
<td>DG Services</td>
<td>DG TP2</td>
</tr>
<tr>
<td>University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Université de Grenoble</td>
<td>Risk Assement</td>
<td>Risk evaluation</td>
</tr>
<tr>
<td>CEA LIST</td>
<td>Methodology</td>
<td>Security</td>
</tr>
<tr>
<td>Public Body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEREMA Dter Sud-Ouest</td>
<td>Public policy</td>
<td>TP1 for Ministry</td>
</tr>
<tr>
<td>CEREMA Dter Centre-Est</td>
<td>Public policy</td>
<td>State of the art</td>
</tr>
</tbody>
</table>
2 types of behavior are in place the proposed architecture:
• Is it needed or could it possible to have just one?
• What impact will be expected?

TP1 PROXY VERSUS REDIRECT
Analysis: Registration TP1, TP2, Authorities, TU

- Each TP1 knows all other TP1
- Each TP2 is registered to one TP1 in the country where it is registered and certificated
- Public services (authorities) is registered to one TP1 in its country
- Each carrier or more precisely each transport unit is registered to one TP2 at a time
Identification of the actors

- Actors have been identified
- When possible « families » are identified
Identification of the work to do by actors

uc Cas d'utilisation du package TP1

Service Public
(from Acteurs)

CU_Déposer demande d'enregistrement Service Public

CU_Actualiser Liste de Services Publics autorisés

Admin TP1
(from Acteurs)

CU_Enregistrer TP1x (autre)

CU_Traiter enregistrement d'un Service Public

TP1
(from Acteurs)

CU_Vérifier Service Public autorisé

TP2
(from Acteurs)

CU_Déposer demande d'enregistrement TP2

CU_Traiter véhicule chargé

CU_Enregistrer Unité de Transport TP1

CU_Traiter enregistrement Transporteur
Identification of the behavior for each « work » to do

sd CU_Déposer demande d'enregistrement Service Public OK

Service Public

Admin TP1

TP1

(from Diagramme de Contexte)

Deposer demande d'enregistrement Service Public()

Demander de validation d'Administrateur

Traiter enregistrement d'un Service Public

OK/KO

Enregistrer SP()

Notifier par email l'enregistrement()

(from Acteurs)
Package for TP1 « Proxy mode » versus « Redirect »

uc Cas d'utilisation du package TP1 Proxy

Service Public
(from Acteurs)

TP1
(from Acteurs)

Admin TP1
(from Acteurs)

cu_Cas_généraux

CU_Déposer demande d'enregistrement Service Public
(from Cas généraux)

CU_Actualiser Liste de Services Publics autorisés
(from Cas généraux)

CU_ENREGISTRER_TP1x
(from autre)

CU_Traiter enregistrement d'un Service Public
(from Cas généraux)

CU_PROXY_Demander Document de Transport TP1
(from Cas généraux)

CU_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter véhicule chargé
(from Cas généraux)

uc Cas d'utilisation du package TP1 Redirect

Admin TP1
(from Acteurs)

TP1
(from Acteurs)

TP2
(from Acteurs)

cu_Cas_généraux

CU_Déposer demande d'enregistrement Service Public
(from Cas généraux)

CU_Actualiser Liste de Services Publics autorisés
(from Cas généraux)

CU_ENREGISTRER_TP1x
(from autre)

CU_Traiter enregistrement d'un Service Public
(from Cas généraux)

CU_REDIRECT_Demander adresse du TP2
(from Cas généraux)

CU_REDIRECT_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter enregistrement Transporteur
(from Cas généraux)

CU_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter véhicule chargé
(from Cas généraux)

CU_Actualiser Liste de Services Publics autorisés
(from Cas généraux)

CU_ENREGISTRER_TP1x
(from autre)

CU_Traiter enregistrement d'un Service Public
(from Cas généraux)

CU_REDIRECT_Demander adresse du TP2
(from Cas généraux)

CU_REDIRECT_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter enregistrement Transporteur
(from Cas généraux)

CU_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter véhicule chargé
(from Cas généraux)

CU_Actualiser Liste de Services Publics autorisés
(from Cas généraux)

CU_ENREGISTRER_TP1x
(from autre)

CU_Traiter enregistrement d'un Service Public
(from Cas généraux)

CU_REDIRECT_Demander adresse du TP2
(from Cas généraux)

CU_REDIRECT_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter enregistrement Transporteur
(from Cas généraux)

CU_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter véhicule chargé
(from Cas généraux)

CU_Actualiser Liste de Services Publics autorisés
(from Cas généraux)

CU_ENREGISTRER_TP1x
(from autre)

CU_Traiter enregistrement d'un Service Public
(from Cas généraux)

CU_REDIRECT_Demander adresse du TP2
(from Cas généraux)

CU_REDIRECT_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter enregistrement Transporteur
(from Cas généraux)

CU_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter véhicule chargé
(from Cas généraux)

CU_Actualiser Liste de Services Publics autorisés
(from Cas généraux)

CU_ENREGISTRER_TP1x
(from autre)

CU_Traiter enregistrement d'un Service Public
(from Cas généraux)

CU_REDIRECT_Demander adresse du TP2
(from Cas généraux)

CU_REDIRECT_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter enregistrement Transporteur
(from Cas généraux)

CU_Vérifier Service Public autorisé
(from Cas généraux)

CU_Traiter véhicule chargé
(from Cas généraux)
Reminder of German study

- **Mode Proxy**

- **Mode Redirect**
Common part – Link to be installed

- TP1s link together
- Public bodies register at TP1
- TP2 registers at TP1
- Carrier registers at TP2

TP1

Authorities

Emergency Responder / Call center

Carrier

Automatic On board Trigger

Casual Observer
Dynamic behavior in proxy mode

1. Carrier registers a journey
Dynamic behavior in proxy mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
Dynamic behavior in proxy mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
Dynamic behavior in proxy mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP1
Dynamic behavior in proxy mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP1
5. If TU is known at TP1 level, TP1 requests to TP2 the documents
Dynamic behavior in proxy mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP1
5. If TU is known at TP1 level, TP1 requests to TP2 the documents
6. TP1 transmits the documents to emergency responder
Dynamic behavior in proxy mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP1
5. If TU is not known at TP1 level, TP1 requests to other TP1s.
Dynamic behavior in proxy mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP1
5. If TU is not known at TP1 level, TP1 requests to other TP1s.
6. The one which knows the TU requests to TP2 the documents
7. This TP1 transmits to the first TP1
Dynamic behavior in proxy mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP1
5. If TU is not known at TP1 level, TP1 requests to other TP1s.
6. The one which knows the TU requests to TP2 the documents
7. This TP1 transmits to the first TP1
8. The first TP1 transmits to emergency responder
Dynamic behavior in redirect mode

1. Carrier registers a journey

- TP1x
- TP1y
- TP1z

- TP1
- Authorities
- Carrier
- TP2

- Automatic On board Trigger
- Emergency Responder / Call centre
- Casual Observer
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP2
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP2
5. TP2 requests its TP1 if it can respond
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP2
5. TP2 requests its TP1 if It can response
6. If the TP1 knows the public body which asks the documents, the response is Yes

Carrier ➔ TP1 ➔ TP2 ➔ TP1z ➔ TP1y ➔ TP1x

TP1

Automatic On board Trigger

Casual Observer

Emergency Responder / Call centre

Authorities
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP2
5. TP2 requests its TP1 if it can respond
6. If the TP1 knows the public body which asks the documents, the response is Yes
7. TP2 transmits the documents to emergency responder
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP2
5. TP2 requests its TP1 if it can response
6. If TP1 do not know the public body, TP1 requests to other TP1s.
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP2
5. TP2 requests its TP1 if it can response
6. If TP1 do not know the public body, TP1 requests to other TP1s.
7. The one which knows the public body responses Yes
1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP2
5. TP2 requests its TP1 if it can response
6. If TP1 do not know the public body, TP1 requests to other TP1s.
7. The one which knows the public body responses Yes
8. The first TP1 transmits the yes to the TP2
Dynamic behavior in redirect mode

1. Carrier registers a journey
2. TP2 registers this journey to TP1. TP1 knows that an identified TU is on trip
3. Alert occurs
4. Emergency responder contact TP2
5. TP2 requests its TP1 if it can respond
6. If TP1 do not know the public body, TP1 requests to other TP1s.
7. The one which knows the public body responses Yes
8. The first TP1 transmits the yes to the TP2
9. TP2 transmits the documents to emergency responder
Analysis

If the two modes are implemented:

- Both modes need requests between TP1 and TP2:
 - Either to get the documents
 - Either to know if the request is addressed by a relevant public body
- Some public body (authority) have not the right to access directly on Internet and so will not be able to request directly to TP2
- TP2 must implement the response to the TP1 to transmit the documents on request of authorities which are not able to request directly
- TP2 must be able to request the TP1 or received the acknowledgment of the TP1 to control or deliver the documents to a public body

If only the proxy mode is implemented:

- TP2 do not need to implement part of the “work”
- TP1 will be the only access for public bodies
- The number of exchange will be less
- OBU or/and eCall do not have the Url of the TP2
 - No risk of error during input of the Url
 - Market will be more open because moving from one TP2 to another one will be easier
TP1 mode proxy can be the solution to implement without redirect solution?

DISCUSSION OR ADDITIONAL COMMENTS
The architecture is designed to be secure and data available in real time. It is a network based on Internet.

SECURITY AND AVAILABILITY
STRIDE : spoofing, tampering, repudiation, information disclosure, denial of service, elevation of privilege

<table>
<thead>
<tr>
<th>Type of threats</th>
<th>Description</th>
<th>Type of need associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoofing or electronic identity theft</td>
<td>Impersonates equivalent to pretend to be someone else when access to the computer.</td>
<td>Authentification</td>
</tr>
<tr>
<td>Tampering or data falsification</td>
<td>Falsification involves malicious modification of data. It may be, by instance, unauthorized alteration of data exchanged between two computers over an open network such as the Internet.</td>
<td>Integrity</td>
</tr>
<tr>
<td>Repudiation</td>
<td>Non-repudiation is the concept of ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract. By instance, a party sends a message to achieve a specified receiver. The sender can not say he did not send it said message. In any case it can not "repudiate" this message.</td>
<td>Non-repudiation</td>
</tr>
<tr>
<td>Information disclosure</td>
<td>Threats of information disclosure involve the exposure of information to individuals who are not supposed to have access. It may be, for example, the ability of a user to read a file that is not authorized to access or the ability of an intruder to read data transmitted between two computers.</td>
<td>Confidentiality</td>
</tr>
<tr>
<td>Denial of service</td>
<td>The denial of service attacks cause impossible access to the system to valid users , for example , making a temporarily unavailable or unusable Web server.</td>
<td>Availability</td>
</tr>
<tr>
<td>Elevation of privilège</td>
<td>Privilege escalation is the act of exploiting a bug, design flaw or configuration oversight in an operating system or software application to gain elevated access to resources that are normally protected from an application or user. The result is that an application with more privileges than intended by the application developer or system administrator can perform unauthorized actions.</td>
<td>Authorisation</td>
</tr>
</tbody>
</table>
Level description

- **Tier I - Basic site infrastructure (non-redundant)**
 - Basic site (non-redundant), a single power source. Tier 1 data centers have many SPOF, systems must be stopped during logistics operations maintenance.

- **Tier II - Redundant capacity components site infrastructure (redundant)**
 - Infrastructure with redundancy for certain components, but non-redundant power supply and air conditioning.

- **Tier III - Concurrently maintainable site infrastructure**
 - Infrastructure with all redundant components, all systems are dual power, coupled power but in active / passive mode, the balancing may have an impact on the availability of services.

- **Tier IV - Fault tolerant site infrastructure**
 - Infrastructure fully redundant, fault-tolerant, energy supply in active / active mode. This type of data center reaches and exceeds an availability rate of 99.99% (less than 24 minutes per year cumulative judgment). This type of data center does not require system shutdown, even for logistics operations maintenance and asset replacement equipment.
Data centre classification by the UPTIME INSTITUTE

<table>
<thead>
<tr>
<th>Level</th>
<th>Characteristics</th>
<th>Availability</th>
<th>Annual shutdown</th>
<th>Hot maintenance</th>
<th>Sensibility to breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No redondancy</td>
<td>99,671%</td>
<td>28,8 hours</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Partly redundant</td>
<td>99,749%</td>
<td>22,0 hours</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Redundancy active/passive</td>
<td>99,982%</td>
<td>1,6 hours</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Redundancy active/active</td>
<td>99,995%</td>
<td>0,4 hour_</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The total availability of the foreseen architecture will be the sum of the availability of couple (TP1/TP2).
What level would be relevant for TP1 and TP2?
Could it be possible to allow a low level to TP2 if TP1 ensures the availability of data?

DISCUSSION OR ADDITIONAL COMMENTS
THANK YOU FOR YOUR ATTENTION

Claude.pfauvadel@developpement-durable.gouv.fr
jean-philippe.mechin@cerema.fr