Sweden’s Vision Zero

Scouting for Global Road Safety

May 6th 2013

Claes Tingvall (Swedish Transport Administration)
(9) By 2050, move close to zero fatalities in road transport. In line with this goal, the EU aims at halving road casualties by 2020. Make sure that the EU is a world leader in safety and security of transport in all modes of transport.

WHITE PAPER
Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system
Our vision is to design cars that should not crash and by 2020 no one will be killed or injured in a Volvo.
A management system standard

<table>
<thead>
<tr>
<th>Reference number of working document: ISO/PC 241 N 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 14 Jan. 11</td>
</tr>
<tr>
<td>Reference number of document: ISO/CD 3 39001</td>
</tr>
<tr>
<td>Committee identification: ISO/PC 241</td>
</tr>
<tr>
<td>Secretariat: SIS</td>
</tr>
</tbody>
</table>

Road traffic safety (RTS) management systems – Requirements with guidance for use

<table>
<thead>
<tr>
<th>Élément introductif — Élément principal — Partie n: Titre de la partie</th>
</tr>
</thead>
</table>

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
Crash injury is largely predictable and largely preventable. It is a problem amenable to rational analysis and remedy.

- Road safety policy must be based on a sound analysis and interpretation of data, rather than on anecdote.
- Since human error in complex traffic systems cannot be eliminated entirely, environmental solutions (including the design of roads and of vehicles) must help in making road traffic systems safer.
- The vulnerability of the human body should be a limiting design factor for traffic systems, i.e. for vehicle and road design, and for setting speed limits.

From the WHO World report on road traffic injury prevention 2004 on the fundamentals
Common driving errors and common pedestrian behavior should not lead to death and serious injury – the traffic system should help users to cope with increasingly demanding conditions.

From the WHO World report on road traffic injury prevention 2004 on the fundamentals
9. CONSIDERS that infrastructure, vehicles and road users should be seen as a system in which human error and inappropriate behavior should always be taken into account. Infrastructure and vehicles should be designed as to prevent and limit consequences of such failures;
15. ENCOURAGES a strong cooperation between the bodies responsible for the infrastructure in the Member States and the vehicle industry in order to support the deployment of promising in-vehicle safety systems that can contribute to save lives on the European road-network. New technical solutions of which the effect is proven can contribute to make it possible to deal with problems like speeding and impaired driving (such as driving under the influence of alcohol, drugs and fatigue);
In essence two imperatives in one basic task

Build a chain of barriers that can accommodate the errors not to exceed human tolerance
The crash sequence:
(matching human error and crash protection)

- education • motivation • cognition, etc. • enforcement • economic incentives
- access to road transport system
- comfort • economy • social conformity
- warning system • supporting system
- intervention in driving
- immediate correction
- preparation for crash
- human error
- crash
- crash protection

Vehicle promote normal driving (ISA, SBR, alcohol interlock) (AICC, LDW) (ESC, LDA, AICC2) (pre-safe, emergency braking) (seat belts, airbag, whiplash protection, pedestrian protection)

Infrastructure promote normal driving (speed warning, tactile warning, humps) tactile edge lines high friction surface barrier design, roundabouts

Others promote normal driving • enforcement • insurance • contracts • emergency service
Driving process (Integrated safety)

- Normal driving
- Deviation from normal
- Emerging situation
- Critical situation
- Crash unavoidable

Energy vs. Time

- Speed limit: 80
- Limit crash safety
- Crash: 60

Time: [∞, 10s, 1s, 0]
Safety as a function of rules, road design, driver behaviour, car design and advanced technology

More drivers give way to pedestrians at lower speeds
Social interaction is better at low speeds
Injury risk and severity is strongly related to speed at impact
The risk of injury MAIS 3+, and fatality, related to impact velocity, for different age groups. From Stigson and Kullgren 2010.
Comparison of MRSC in one and two star cars in different speed limits

MRSC 5 %+, n=542

- 30 km/h: 24% (star), 14% (no star)
- 50 km/h: 28% (star), 21% (no star)
- 70 km/h: 40% (star), 40% (no star)
- 90 km/h: 44% (star), 41% (no star)
Shared responsibility

- **Head-on**: Passive 60 + Active 20
- **Pedestrians**: Passive 10 + Active 30
- **Side**: Passive 55 + Active 15
- **Rear-end**: Passive 20 + Active 20
- **Large animals**: Passive 80 + Active 30
SUMMARY

• It is more probably more important to define and regulate the pre-conditions of the system than to divide the responsibilities post impact.

• It is more important to define what is normal driving on a minimum requirement level than to regulate in every situation what the driver must do.

• In an ideal world, regulations support integrated safety and make it work.
SUMMARY

• Error and violation must be handled separately throughout the whole process of regulation

• Norms and rules must also be treated as two separate issues – only in the perfect world they match
The Challenging questions

• Imagine a pedestrian crossing where no one is killed or seriously injured – what would it look like?
• Who should be responsible for safe walking, and how do you divide the responsibility?
• What should be regulated?
Thank you for the attention