LNG: A safe fuel for trucks
LNG task force
Contents of this presentation

- Overview standards and regulations current present and upcoming
- LNG system and its components
- LNG tank and components
- What is boil off?
- Venting management system
- Comparison between diesel and methane
- Crash and fire accidents
- Fire instructions
- Safety tests required on LNG tank and components
Where does the LNG vehicle regulation comply with

LNG Task force:
responsible for updating the regulation 110
- Members of the LNG TF (component manufacturers, NGVA Europe, NGV Global, OEM’s and testing agencies)

Regulation 110 Uniform provisions concerning the approval of:
I. Specific components of motor vehicles using compressed natural gas (CNG) and/or liquefied natural gas (LNG) in their propulsion system;
II. Vehicles with regard to the installation of specific components of an approved type for the use of compressed natural gas (CNG) and/or liquefied natural gas (LNG) in their propulsion system
ISO STANDARDS – LNG FOCUS

ISO Standards Structure for Fuel Storage: Cryogenics & CNG

Adapted from: Harmonization of ISO Standards and UN Regulations: New on-board components for CNG, H2 and CNG-H2 blends, A.Bassi, SINTESI, March 2008
UN Structure for NGV Regulations

United Nations Economic Commission for Europe (UN / ECE)

Inland Transport Committee

Working Party on Pollution and Energy (GRPE) Regulation 115

Informal Group Gaseous Fuelled Vehicles

HDDF TF LNG TF

Working Party 29 World Forum for Harmonization of Vehicle Regulations

Specific Components of CNG Systems and their Installation on Vehicles (R67 is corollary for LPG)

Working Party on General Safety Provisions (GRSG) Regulation 110

WP1 Road Traffic Safety
Example of basic LNG system

Annex A
(informative)

Construction and assembly

Figure A.1 — LNG fuelling system

1. Fill check valve
2. Fuel shutoff valve
3. Excess flow valve
4. Vapor shutoff valve
5. Pressure control regulator
6. Primary relief valve (PRV)
7. Secondary relief valve (FRV)
8. Fuel contents gauge
9. Heat exchanger—vaporizer
10. Fill fitting
11. Automatic fuel shutoff valve
12. Tank pressure gauge
13. Overpressure regulator
14. Vent connector
15. Gas temperature sensor

ECU, Electronic control unit of engine
Components used in the LNG part:

- ECU for CNG/LNG applications
 - Connected to the vehicles ECU
- LNG heat exchanger vaporizer
 - LNG is vaporized into gaseous state (considered CNG)
- LNG pressure control regulator
- LNG pressure / temperature sensor
- Natural gas detector
- the automatic valve, check valve, pressure relief valve, excess flow valve, manual valve and non-return valve for LNG applications
LNG components

LNG tank
- Double insulated stainless steel tank (inner vessel, insulation and vacuumed, outer vessel)
- Temperature inside -163°C
- Pressure inside the tank is depending on system (between atmospheric and 1.8MPa currently)
- Automatic valve
- Pressure relief valve’s (primary and secondary)
 - Primary is used for venting
 - Secondary is used in case of emergency
Example of LNG tank
A cryogenic fluid is typically kept at low temperatures in a storage vessel. The storage has a major challenge due to the inherent heat input from the environment.

The effect of the heat input is warming of the cryogenic fluid:

- If (constant volume) \rightarrow Pressure increase in the storage vessel
- If (constant pressure) \rightarrow Fluid boils and “boil-off” vapours are released from the vessel (venting)

The vapours created due to the ambient heat input (while maintaining constant pressure in the storage vessel) are called “boil-off”.

The discharge of these vapours out of the storage container is called venting.
Boil-off for the vehicle LNG Tank

- LNG is a cryogenic liquid stored in a tank on-board the vehicle. Inherently heat from ambient flows in and warms the liquid.
- For this application, the tanks are designed to take higher pressure, therefore being able to contain the LNG without release of vapour.
- The time the tank can hold the LNG without venting is called “holding time”. By regulation 110 and codes in US and Canada the holding time is 5 days.
The use of LNG has the inherent time factor, due to the heat input from the ambient to the vehicle tank.

As required by codes in US and Canada, the LNG vehicle tanks are designed to contain the LNG for at least 5 days without venting.

For normal operation, there is no release of natural gas to atmosphere.

To avoid a dangerous condition, due to pressure increase above the maximum operating limit, the LNG tank will vent to atmosphere a limited amount of gas.
Though designed to be ‘vent free’ it is not possible to prevent small amounts of methane escaping to the atmosphere.

- Commercial trucking systems are designed to match fuel consumption with fuel storage and delivery quantities.
- Few commercial operators have trucks immobile for five days.
- Venting in enclosed spaces (i.e. workshops) is taken into account (as with CNG) to provide proper ventilation.
LNG venting management systems and techniques are well known

- Pressure regulator (‘economizer’ regulator) vents at pre-set pressure, opening for ~10-30 seconds and closes
- Adding LNG to the fuel tank condenses ‘warmer’ fuel
- Starting the engine or driving briefly relieves pressure in the tank and prevents venting
- Vapor recovery systems on the vehicle can be installed, sending ‘warm’ fuel back to fuelling station tanks
In the Regulation 110 we did insert the following test:

Annex 3B 2.7. Vehicle LNG tank(s) shall have a design hold time (build without relieving) minimum of 5 days after being filled net full and at the highest point in the design filling temperature/pressure range.
2 Examples of heat management and types of fuel delivery systems

- Dealing with the amount of heat accumulated in the tank depends on the fuelling station and vehicle application
- Vapour transfer to fuelling station or on-board processing of vapours reduces the tank pressure and resets the clock on holding time.
- Best practice and experience is the key to successful operation.

Prepared by: Mihai Ursan, PhD., P.Eng.
Document number TF-LNG-02-06 (Westport, paper) What is Boil-off?
LNG filling receptacle

- Spill during filling is no more than 30cm³. The filling nozzle and receptacle are a closed system.
- During filling there is no vapor. (With diesel vapor will come out of the tank during filling of the open system).
- There is a check valve (non return valve) in the receptacle.

4.76. "LNG filling receptacle" means device connected to a vehicle or storage system which receives the LNG fuelling nozzle and permits safe transfer of fuel. The receptacle consists as minimum from a receptacle body and from a check valve mounted inside the body.

18.12.1 A system shall be provided for preventing the fuel tank from being overfilled.
The content of the tank is protected with an automatic valve that in case of leakage or crash will be closed to prevent the tank from being emptied to atmosphere.

Following provisions are in the R110 for the automatic valve:

- “18.6.1. Automatic valve
- 18.6.1.1. An automatic valve shall be installed in the fuel supply line, directly on every LNG tank (in a protected position).
- 18.6.1.2. The automatic valve shall be operated such that the fuel supply is cut off when the engine is switched off, irrespective of the position of the ignition switch, and shall remain closed while the engine is not running. A delay of 2 seconds is permitted for diagnostic."
Pressure relief valve and venting system

- Primary pressure relief valve is used for venting
- Provisions in the R110 for venting:
 - 18.6.6. Vent line or connector The vent line or connector may be mounted inside or on the LNG tank (in a protected position). It should be readily accessible. The vent connector shall be suitable for the purpose at temperatures indicated in Annex 5O for the working pressure of the LNG tank.
18.6.7. Venting management system The primary pressure relief valve shall be piped to a vent stack which extends to a high level. The primary and secondary relief valve outlets shall be protected by from fouling by dirt, debris, snow, ice and/or water. The vent stack shall be sized to prevent flow restriction due to pressure drop. Gas exiting the vent stack or secondary relieve valve shall not impinge on enclosed areas, other vehicles, exterior-mounted systems with air intake (i.e. air-conditioning systems), engine intakes, or engine exhaust. In the case of dual tanks, the primary relief valve outlets piping for each tank may be manifold to a common stack.
Secondary relief valve

- The secondary relief valve is a redundancy of the primary relief valve.
- The set pressure of the secondary relief valve is higher than the primary relief valve.
- In case of an emergency the primary will operate as intended. Only in case that the primary relief valve is not working properly or cannot handle the pressure build up enough the secondary relief valve is activated.
18.13. The LNG system in category M vehicles shall be equipped with a natural gas detector and/or gas tight housing. The LNG system in category N vehicles may be equipped with a natural gas detector if the fuel storage tank and associated piping is mounted on the exterior of the vehicle without the possibility of gas trapping (as in paragraph 18.12.). If the fuel storage tank is located inside the cargo area of a category N vehicle then a natural gas detector and/or gas tight housing is mandatory.

Vehicles of the N and M classes are medium and heavy duty trucks.
Comparison between LNG and Diesel

- **Methane** can auto-ignite at 540°C if the methane content is within the flammability range.
- Methane is lighter than air at temperatures above -110°C. Small spillages of liquid methane quickly vaporize to atmosphere. Larger spillages of liquid methane remain on the ground and vaporize. The vaporization intensity depends on the substrate, the temperature and the area covered by the spillage. The substrate eventually cools, reducing the evaporation.
- **Diesel puddles on the ground and does not vaporize quickly.**
- Diesel can auto-ignite at 210°C
The following images are from an accident in Australia involving an LNG-fueled truck which rolled over, severely damaging the vehicle cab. As can be seen in the pictures, the LNG fuel tanks, which are mounted on a gantry at the back of the cab, were not penetrated and suffered only external damage.
Crash accidents

The images below are from an LNG-truck in California with side-mounted fuel tanks. The truck rolled onto its side, causing significant damage to the truck. The LNG tanks were undamaged in the incident.
In 2008, a Polish LNG bus on a test ride caught fire due to the cracking of a hose carrying hydraulic oil which ignited in the engine space. The fire spread to the inside of the bus which burned out completely.

The engine and neighboring LNG tanks were in the hottest part of the fire where temperatures were hot enough to melt aluminum materials. The LNG tank and safeguards functioned as designed, releasing its methane through the primary and secondary pressure relief devices which ejected the gas in a safe direction. The gas combusted but did not add to the burning of the bus itself and the tanks depressurized without any explosive activity.
Figure 1: This thermal melt down was attributed to cab wiring. An electrical short started the fire which was not put out immediately. The result was a destroyed cab. Note that the fire raged above and forward of the LNG tank. All photos were taken the day after the fire.
Fire accidents

Figure 2: The LNG tank’s contents were not affected by the fire’s heat. The vacuum insulation that keeps the ambient temperature from reaching the inner tank also kept the much higher fire temperatures from reaching the inner tank. The door to the LNG tank was closed during the fire; note the melted plastic tube and harness covering and the pressure gauge. The tank pressure stayed below 0.89MPa.

Source: Clean air power
Fire accidents

Figure 3: Complete melt down from other side.
LNG tank

Source: Clean air power
Fire instructions

- Fire instructions should be provided to fire-brigades.
- As example for this document the “Procedures for emergencies arising during the transportation of liquid methane (LNG and LBG) Tankers and tank containers can be used. (produced by Swedisch Gas Association – interbranch organisation for operators in the biogas, vehicle gas, LPG, natural gas and hydrogen sectors.

- Example of paragraph is like following:
5.4 Transport unit leaking with fire (Scenario:)

The transport unit is leaking liquid and/or gaseous methane which is burning.

Action:

— Seal off an area with a radius of at least 300 m around the transport unit. The distance can be modified following consultation between the incident commander and the supplier.

— Stop all engines and remove all ignition sources except for the transport unit from the sealed area.

— Do not attempt to extinguish the fire without first cooling the part of the transport unit exposed to the radiated heat from the fire. Note: the water must not come into contact with the liquid methane. Water produces energy, which increases evaporation and may in turn increase the intensity of the fire. Note: extinguishing the leaking gases without shutting off the flow of gas creates a high risk of re-ignition. As previously mentioned, the tank construction provides a high level of passive fire protection.

Source: Swedisch Gas Association – interbranch organisation for operators in the biogas, vehicle gas, LPG, natural gas and hydrogen sectors
5.4 Transport unit leaking with fire

Scenario:

- The transport unit is leaking liquid and/or gaseous methane which is burning.
Fire instructions

- If possible, remove other vehicles containing hazardous cargo from the risk zone. If this is not possible, these vehicles should also be cooled using water.

- Determine whether the leak can be stopped by shutting off the gas/liquid supply.

- If it is possible to extinguish the fire in order to allow the gas supply to be shut off, powder should be used as an extinguishing agent.

- If the fire cannot be extinguished, allow the gas to burn while the tank is cooled, until the tank is empty or the fire goes out.

- If the transport unit needs to be emptied, the procedure must be determined jointly by the incident commander and the supplier.

- The supplier must authorize removal of the transport unit.
Design requirements on the LNG system

- The LNG/CNG tank(s) cylinders shall be at least 200 mm of the flour level (for diesel there are no such definitions)
- The mounting of the tanks shall comply with the G-forces mentioned in the regulation:
 - 18.4.4. The fuel container(s) and/or tank(s) shall be mounted and fixed so that the following accelerations can be absorbed (without damage occurring) when the container(s) and/or tank(s) are full.
Tests required on LNG Tank and components

- Hold time test. (no venting allowed within 5 days)
 - The LNG tank is tested at maximum allowed net quantity of LNG.
 - Provisions are given in R110 annex 3B A.2
Tests required on LNG Tank and components

- **Drop test**
 - **2 drop tests are required**
 - 9 meter drop test of the fuel tank on the most critical area of the tank (other than the piping end).
 - 3 meter drop test on the piping end.

Source: Transport Canada
Tests required on LNG Tank and components

- **Bonfire test**
 - The bonfire tests are designed to demonstrate that finished tanks with the fire protection system (tanks valve, pressure relief valve and/or integral thermal insulation) specified in the design will not burst when tested under the specified fire conditions.
 - Provisions are given in R110 annex 3B A.1
 - The average temperature of the fire source shall remain above 590°C.
Tests required on LNG Tank and components

- The pressure inside the LNG tank will rise very slowly due to the insulation.

- LNG will be vented until the pressure is lowered like in normal use.

- Diesel will start to boil and the pressure in the tank will rise.

- Worst case the diesel tank will explode.
Tests required on LNG Tank and components

- Material tests on the tank
 - Tensile test
 - Impact test
 - Bending test
 - Weld examination

- Low temperature test (-163°C).
 - All LNG components are to be tested at -163°C for leak tightness.
 - All duration tests on LNG components should use the low test temperature (-163°C).
Coming soon….clean, economical LNG for the transportation sector
Important sites:

On behalf of the LNG-TF
Thanks for your attention

Questions and Clarifications?
LNG: A SAFE FUEL FOR TRUCKS
Purpose: Advocate for a change in ADR regulations that prevent LNG vehicles from being ADR-certified

- While LNG is allowed for general transport purposes it is not allowed for ADR-certified vehicles.

ADR regulations provide an exemption related to the carriage of gases so long as the gas is used for propulsion or operating on-board equipment.

Annex A: 1.1.3.2 Exemptions related to the carriage of gases

The provision laid down in ADR do not apply to the carriage of:

- Gases contained in the tanks of a vehicle, performing a transport operation and destined for its propulsion or for the operation of any of its equipment (e.g. refrigerating equipment)

But……

Annex A: Chapter 9.2. subsection 9.2.4.3 Fuel tanks: The fuel tanks for supplying the engine of the vehicle shall meet the following requirements:

In the event of any leakage, the fuel shall drain to the ground without coming into contact with hot parts of the vehicle or the load;
LNG Safety Characteristics

- Natural gas liquefies at -163°C
- LNG is not flammable (due to its density). Only the vapor will ignite when the concentration is between 5% and 15% by volume in air.
- LNG is non-toxic, non-corrosive and does not contaminate soil or ground water.
- When spilled LNG, vaporizes creating a white cloud of condensed moisture.
- The vapor cloud is heavier than air until it reaches -112°C, then it disperses quickly (like methane in its normal gaseous state).

Global Overview on the Development of LNG Trucks

- Summary world market for LNG & trucks
- European LNG truck development
- Development of LNG truck market: North America
- LNG truck developments: China & Australia
- Fuel suppliers’ vision of LNG for trucks
Current Global View: HDV NGVs

<table>
<thead>
<tr>
<th>REGION</th>
<th>TOTAL NGVs</th>
<th>MD/HD BUSES</th>
<th>MD/HD TRUCKS</th>
<th>% MD/HDV TRUCKS of TOTAL NGVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>9,733,192</td>
<td>390,849</td>
<td>155,207</td>
<td>1.6%</td>
</tr>
<tr>
<td>EURASIA</td>
<td>336,862</td>
<td>32,200</td>
<td>52,760</td>
<td>15.7%</td>
</tr>
<tr>
<td>AFRICA</td>
<td>188,220</td>
<td>1,463</td>
<td>85</td>
<td>0.45%</td>
</tr>
<tr>
<td>EUROPE*</td>
<td>1,735,115</td>
<td>278,472</td>
<td>193,759</td>
<td>11.2% (4.3%)</td>
</tr>
<tr>
<td>(1,347,115)</td>
<td></td>
<td>(45,684)</td>
<td>(57,966)</td>
<td></td>
</tr>
<tr>
<td>S & CENTRAL AMERICA</td>
<td>4,608,799</td>
<td>13,920</td>
<td>9,660</td>
<td>0.21%</td>
</tr>
<tr>
<td>NORTH AMERICA</td>
<td>131,036</td>
<td>13,230</td>
<td>~15,550(1)</td>
<td>11.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(~4000 L-NGVs)</td>
<td></td>
</tr>
<tr>
<td>WORLDWIDE</td>
<td>16,424,603</td>
<td>697,596</td>
<td>361,748</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

*UKRAINE | 388,000 | 232,788 | 135,793 | 35% |

Source: Gas Vehicle Reports, Aug/September 2012/13, NGVAmerica

(1) US/Canada NGV Market Analysis (segmentation), Tiax/ANGA, 2010
International Standards & Regulations are Being Developed for L-NGVs

United Nations Regulations

- Amendments to R.110 for L-NGV components & installation (awaiting approval by WP29)
- Dual-fuel trucks (including LNG) R.49
- Fuel station signage agreed at UN (WP1)

ISO Standards Development is on-going

- Fueling stations and storage require harmonized global regulations, current national standards are insufficient. *(ISO standards underway)*
- Tanks for on-board storage *(ISO 1299/2012 standard completed)*
- Harmonized fuel connector/receptacle needed *(ISO standard underway)*
The share of gas traded between world regions is predicted to expand from 13% in 2005 to 22% in 2030;
LNG will account for almost 85% of that increase.
The European share of global LNG trade is predicted to increase from the current 25-27% to about 35%
Expansion of LNG terminals provide new opportunities for L-NGV fuelling stations in different countries.
European OEM LNG Trucks

• IVECO Stralis LNG
• Mercedes Econic LNG
• Scania P310 LNG
• Volvo FM MethanDiesel
European LNG Truck Fleets: Rolande

- Rolande (NL/F/D) supermarket distribution (12 Iveco Stralis trucks)
- 6 L-CNG stations NL
- Fuel costs savings over diesel = €8,600 to €15,000 per vehicle per year (over 7 years)

Source: Rolande 2012
European LNG Truck Fleets
Simon Loos (NL)

• 30 Mercedes LNG trucks deployed in 2012
• Pollution reduction:
 - CO2 -30%
 - Particulates -85%
 - Noise -30%
• 600-700 km range
• Fuel consumption = diesel
CHive LNG REFUELLING NETWORK: Some stations are inactive due to current LNG fleet demand (2013)
Barcelona LNG Garbage Trucks

• With five terminals currently in operation, Spain is the largest LNG market in Europe. (World’s third-largest LNG importer after Japan and South Korea.)

• LNG makes up around 70% of Spanish natural gas supplies.

• For over 8 years LNG has been used as a transport fuel in Barcelona.

• Barcelona’s LNG garbage trucks belong to CESPA and are hired by Barcelona city council.

Chassis is made by MAN and Ros-Roca, Indox, Messer and Gas Natural have assisted the project.
LNG for Heavy Duty Vehicles (USA)

- 150 LNG fuelling stations (42 public)
- 4,000+ L-NGVs
 - Freightliner
 - Kenworth
 - Peterbilt
 - Autocar
 - Capacity
 - Navistar?
 - Volvo?
Local, Regional HD NGV Trucks
LNG truck stations Western US

LNG Fuel Stations In The Western United States

○ = LNG Fuel Station
41 L-NGV Stations in Southern California

○ = LNG Fuel Station
N. American LNG Truck Case Studies
Vedder Transport

- Largest fleet in British Columbia, Canada – high environmental commitment
- 50 new LNG tractors
- Hauling milk, food, forestry and waste products in dedicated service
- 3500 tonne annual GHGe reductions from implementation
- Cost reductions result in ~16 month payback
- 1 fuelling station – public access
N. American LNG Truck Case Studies
United Parcel Service

- Largest private fleet in USA – environment, energy security concerns
- 82 new LNG tractors – operating between Los Angeles, Las Vegas and Salt Lake City Distribution Centres
- 688 mile (1107 km) corridor with 3 fuel stations
- 4 fuelling stations
 - public access
- ~5100 tonne annual GHGe reductions from implementation
LNG for Port Applications
(Examples in Long Beach, California, USA)
CHINA

22 LNG receiving terminals being built
350 L-NGV Fuelling Stations; 13,300 L-NGVs*

Slide adapted from GAS ADVISERS 3 Dec 2009

*Vehicle data: Westport 2013 (US DOE-EIA)
Currently 10 Operational LNG Refueling Stations with 4 More Planned, All on Major Trucking Routes.

Source: EVOL LNG May 2009
LNG FOR TRUCKS
The fuel suppliers’ views….

Also as fleet operators of trucks & ships
Shell Vision LNG Vehicles
Road & Marine Transport

LNG in Transport from vision into reality
Lauran Wetemans – GM, DLNG

NGV Summit, FC Business Intelligence, Brussels October 2012
Shell Vision for LNG Trucks in N. America: $100m investment in LNG & L-CNG fuelling stations

- Canadian Green Corridor, 1500 km
- Vancouver – Calgary - Edmonton
- Shell Flying J Network
- Sites opening end 2012
Shell Vision… Europe

- Focus on Marine & Road
- North West Europe
- Including Addressing Own Demand
 - 2 barges with ISB on Rhine

“Shell owns 1,800+ vessels & target 25% to be using LNG by 2025.” (Poli-techs, March 2013, Brussels)
Shell view of LNG for Transport

CRITICAL SUCCESS FACTORS
Conversion Cost
- LNG refueling station will be 3-5 times more expensive than current diesel station
- Increased availability of LNG fuelled trucks at a lower cost
- Cost reduction across the supply chain

PRICING
- Governed to lower your total costs of ownership
- Enabling to provide customers a high quality fuel at discounted diesel prices

REFUELING NETWORK
- Network Plan for LNG sites on existing Truck network
- Align with customer priorities
Linde is a leader supplier of LNG and LNG fuel stations.

Linde North America has purchased 23 LNG trucks for own distribution fleet.

- Peterbilt and Kenworth LNG trucks with LNG fuel system and 8.9L NG engine
 - Cummins West Port ISLG Engine
 - 350 HP
- Trucks deployed in Southern California, Texas and Midwest
- Lower weight, spark ignited units has even improved pay-load

Take-out: Good driver experience and economics in line with expectations. Linde always operating weight restricted which is limiting areas were low horse power engines can be used.
Linde view of what’s required for LNG to penetrate the heavy truck market

- Codes & standards need to come in place, beyond local ones
- Industry must put „Safety first“
- Gas quality requirements needs to be sorted out (not that easy)
- Never accept solutions allowing methane to free air to be adopted
- Hen & egg situation can be solved
- LNG and CNG goes hand-in-hand and LNG is not a viable option for every heavy vehicle!
- Biomethane likely to play significant role on many markets as transport fuel and EU wide regulations on certificate trading needed
- All stakeholders need to work close together to align expectations and set priorities during early market phase
LNG: A SAFE FUEL FOR TRUCKS