FIMCAR

Frontal Impact Assessment Approach

Prof. Dr. Heiko Johannsen, Dr. Mervyn Edwards, Ignacio Lazaro, Dr. Thorsten Adolph, Ton Versmissen, Dr. Robert Thomson
• EC funded project ended September 2012

• Partners:
 – Car manufacturers: Daimler, FIAT, Opel, PSA, Renault, Volkswagen, Volvo
 – OEM associated: CRF
 – Research institutes test houses: BASf, Chalmers, IDIADA, TNO, TRL, TTAI, TUB, UTAC
 – Suppliers: HUMANETICS, IAT

• 2/3 majority required for decision making
FIMCAR definition of compatibility

• Compatibility consists of self and partner protection.
• Improved compatibility will decrease the injury risks for occupants in single and multiple vehicle accidents.
• Compatible vehicles will deform in a stable manner allowing the deformation zones to be exploited even when different vehicle sizes and masses are involved.
Accident analysis
Summary of findings

• Structural interaction still an issue
 – over/underriding
 – horizontal homogeneity (small overlap / fork effect)
• Compartment strength still an issue
 – seems to be independent from vehicle size
 – especially in crashes with HGV and objects
• High proportion of fatal and severely injured in large overlap accidents (even at relatively low speed)
• Large number of injuries are related to restraint loading without intrusion
• Higher injury risks for occupants in lighter car
FIMCAR priorities

Structural interaction

- **Structural alignment**
 - Common interaction zone defined based on US bumper zone
- **Vertical load spreading**
 - Load spreading in common interaction zone
 - Load spreading below interaction zone

![Diagram of Common Interaction Zone and Load Spreading](image)

- A = 180 mm
- B = 406 mm
- C = 508 mm
FIMCAR priorities
Structural interaction

• Structural alignment
 – Common interaction zone defined based on US bumper zone
• Vertical load spreading
 – Load spreading in common interaction zone
 – Load spreading below interaction zone
• Horizontal load spreading
 – Load spreading between longmembers
 – Load spreading outside longmembers
FIMCAR priorities
Test severity and self protection

• Test severity
 – current compartment strength requirements maintained
 – appropriate severity level for occupant protection (RS)
 – (address mass dependent injury risk)

• Pulse requirements
 – field relevant pulse
 – different pulses
FIMCAR Final Decision

• Full-width deformable barrier test
 – 50 km/h
 – LCW based metrics for alignment of crash structures

• Current ODB (ECE R94)
 – Additional a-pillar displacement limits
 • 50 mm max
 • Discussion in IG FI suggests, that FIMCAR definition is not appropriate, however, the basic idea of limiting intrusion seems to be acceptable
Justification FWDB

• Accident analyses have shown the relevance of collisions with high overlap and high acceleration

• More representative loading of the front structures with the FWDB w.r.t. car-to-car tests and accidents
 – FWRB guarantees stable, ideal deformation of forward structures not observed in real accidents
 – FWDB tests produce more realistic deformation patterns compared to car-car tests
 – > more challenging for structural design
Justification FWDB
more representative deformation pattern

FWDB

FWRB
Justification FWDB
more representative deformation pattern
car-to-car 50% overlap
Justification FWDB
more representative deformation pattern

FWDB

FWRB

Heiko Johannsen
Justification FWDB

• Higher dummy loadings with the FWDB
• Acceleration pulse more comparable with car accident pulses
 – especially in the initial phase
 – > more representative w.r.t. restraint system triggering
 – issues detected in FWDB tests
 – issues detected in EDR data
 – issues detected in accident reconstructions
• Maximum acceleration can be higher than in FWRB
Justification FWDB

more representative pulse (in comparison to CASPER project accident reconstruction pulses of ECE R94 compliant cars)
Justification FWDB

Centered pole impact

restraint system triggering (accident reconstruction)

Occupant starts to move

Airbag start to deploy

Airbag is loading the occupant

Informal document GRSP-52-24 (52nd GRSP, 11-14 December 2012, agenda item 7)
Justification FWDB
restraint system triggering (accident reconstruction)
Justification FWDB restraint system triggering (40 km/h FWDB test)

- PAB starts to deploy
- Occupant starts to move
- FSP contacts deploying airbag
Justification FWDB

restraint system triggering (airbag delay in 40 km/h FWDB test)
Justification FWDB restraint system triggering (airbag delay in 40 km/h FWDB test)
Justification FWDB restraint system triggering (airbag delay in 40 km/h FWDB test)
Justification FWDB
restraint system triggering

![Bar chart showing airbag trigger times for different cars. (FWRB vs FWDB)]
Justification FWDB
restraint system triggering
Justification FWDB
restraint system triggering (airbag delay in car 2)

![Graph showing deviation from ECE R94 limit for different body parts: head a3ms, HPC, neck FZ, neck MY, chest deflection, chest VC, Femur FZ for FWRB driver, FWRB passenger, FWDB driver, FWDB passenger. The graph indicates the percent deviation from the ECE R94 limit for each body part and orientation.]

Informal document GRSP-52-24
(52nd GRSP, 11-14 December 2012, agenda item 7)
Justification FWDB
restraint system triggering (airbag delay in car 2)
Justification FWDB
restraint system triggering (EDR data and FWRB data)

Range of Airbag Fire Decision Times Observed in Crash Tests and Field Collisions

- GM Single Stage Air Bags
- 48 km/h Full Frontal Rigid Barrier Crash Tests
- ACR4-ACR8 / All Collisions w/ Deployment

Average for Field Sample (118 cases): 32.9 ms
Average for Rigid Barrier Crash Tests (13 tests): 6.7 ms

Dalmotas DJ, German A and Comeau J-L; Crash Pulse Analysis using Event Data Recorders; Proceedings of the 19th Canadian Multidisciplinary Road Safety Conference, Saskatoon, Saskatchewan, June 8-10, 2009.
Justification FWDB

restraint system triggering (NASS EDR data with good representation of FW test, only 12 o’clock impacts GM volume cars)
Justification FWDB

restraint system triggering (belt forces dependent on test type)
Justification FWDB

restraint system triggering (chest deflection dependent on test type)

Driver Chest Deflection Time Histories as a Function of Test
2005 Ford Freestyle

- T5263_FFRB_56_50M_DRI
- T5541_FFDB*_56_5F_DRI
- T5540_FFDB*_40_5F_DRI

* TRL Barrier Face

Pre analysed data made available by Dainius Dalmotas, D. J.
Dalmotas Consulting, Inc
Justification FWDB

- Better assessment of structure alignment capabilities possible
 - Engine dump attenuated
- Detection of lower structures possible that were proved to beneficial for
 - Car-to-car frontal impact
 - Car-to-car lateral impact
FWDB metrics

Concept:

- Assess structural alignment from measurement of forces in rows 3 and 4

- Part 581 Zone: 16 to 20 inches (406 to 508 mm)

- Height of load cell: 125 mm

- Height of Ground: 80 mm
FWDB Metric

- Note: metric was developed based on FWDB 56 km/h tests, metric needs to be adjusted to proposed impact velocity of 50 km/h (especially LR)
FWDB Metric
SEAS detection

- FWWRB would require stage 2 approach for correct assessment of cars applying SEAS in common interaction zone
 - Likely additional test
- Test and simulation results available for FIMCAR suggests
 - SEAS structures that are beneficial in car-to-car impacts can be detected
 - ORB as proposed for FWWRB SEAS detection also credits SEAS that are expected not to be beneficial
FWDB R&R

• R&R analysis includes
 – 2 barrier test with same car in different TNO labs
 – 4 barrier tests with same car (2 each at FIAT and IDIADA)
 • IDIADA tests with different dummy use than at FIAT
 • Ride height seems to be different
 – Several impactor tests
 – 3 barrier test with same car (1 at FIAT and 2 at BASSt)
 • BASSt LCW does not meet FIMCAR LCW requirements
• R&R analysis conclusion
 – R&R is acceptable
 • I.e. in line with other crash tests, for cars with a stable front structure in this test mode.
 • For further analysis of R&R the use of a car with a stable front structure and sum forces above 500 kN is recommended.
 • Furthermore the LCW requirements as developed by FIMCAR should be met for the LCWs used.
 – One of the three FIMCAR test (i.e., the one at BAST) resulted in different metric outcome compared to the other two. This was attributed to insufficient front structure stability and issues of the LCW
Disadvantages FWRB

• FWRB results in a pulse that is not representative in the initial stage

• FWRB may results in simple restraint system trigger algorithms that may cause too late airbag triggering in other crash configurations (e.g., car-to-car, pole, lower speed …

• FWRB causes unrealistic low requirements for the front structure energy absorption capabilities, especially by low requirements concerning load path stability against bending …
Disadvantages FWRB

- Engine dump results wrong assessment of location of energy absorbing structures
 - Metrics need to assess before engine dump occurs
 - Most advanced proposal results in assessment of crash cans in some vehicles and not of the energy absorbing structures
 - SEAS detection is impossible
Advantages and disadvantages ODB

+ ODB guarantees that current level of compartment strength will be maintained for all vehicles
+ Used in legislated and consumer tests in many countries
+ Provides a softer pulse compared to the full width test
 + Harmonization potential
 − Load spreading not covered
Justification ODB Modification

- Additional compartment strength requirement will likely not affect recent cars
 - They are Euro NCAP driven are designed for more challenging requirements
- Legal requirement required to ensure minimum safety levels even if cars are not designed for good ratings
- FIMCAR to maintain compartment strength at least at level of today requires compulsory target
Achievement of FIMCAR priorities

• Structural alignment
 – Addressed with FWDB metric

• Vertical load spreading
 – Addressed at basic level
 – Requirements for row 3 and 4
 – Limit reduction on Row 3 for load spreading down to row 2
 – Minimum section size required for SEAS to be detectable

• Horizontal load spreading
 – Not addressed
Achievement of FIMCAR priorities

• Current compartment strength requirements maintained
 – Addressed by definition

• Appropriate severity level for occupant protection (RS)
 – Addressed (metrics are expected to be consistent even at lower speeds, dummy performance?)

• Pulse requirements
 – Addressed
Benefit Analysis

• Assumptions
 • Occupants suffering from high acceleration injuries would benefit from the introduction of FWB
 • Occupants suffering from under/override accidents caused by structural misalignment would benefit from the introduction of FWB
Benefit Analysis

• Assumptions (continued)
 • Occupants suffering force mismatch issues would benefit from additional introduction of PDB
 • Occupants suffering from fork effect issues would benefit from additional introduction of PDB
 • Occupants suffering from low overlap would benefit from additional introduction of PDB
Benefit Analysis

- Target Population GB

```
<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No issue</td>
<td>177</td>
<td>56%</td>
</tr>
<tr>
<td>No issue (High severity)</td>
<td>16</td>
<td>5%</td>
</tr>
<tr>
<td>No issue (Large vehicle underride)</td>
<td>76</td>
<td>24%</td>
</tr>
<tr>
<td>Compatibility issue</td>
<td>94</td>
<td>30%</td>
</tr>
<tr>
<td>Deceleration</td>
<td>43</td>
<td>14%</td>
</tr>
<tr>
<td>Frontal Force / Compartment Strength</td>
<td>12</td>
<td>4%</td>
</tr>
<tr>
<td>Override</td>
<td>17</td>
<td>5%</td>
</tr>
<tr>
<td>Fork effect</td>
<td>38</td>
<td>12%</td>
</tr>
<tr>
<td>Low overlap</td>
<td>27</td>
<td>9%</td>
</tr>
</tbody>
</table>

Full width Test
PDB Test
```
Benefit Analysis

- Target Population D

KSI (MAIS 2+)
195 (100%)

- No issues
 90 (46%)
 - High severity
 14
 - Others
 37
 - No issue
 39

- Compatibility issue
 24 (13%)
 - Frontal Force Mismatch
 1
 - Structural interaction
 23
 - Fork Effect
 0
 - Low Overlap
 14
 - Underride
 9

- Deceleration
 80 (41%)

- Full width Test
- PDB Test
Benefit Analysis

• Estimation of break even costs per car scaled for Europe
 • For introduction of FWB with compatibility metrics
 • 104 – 294 Euro
 • For introduction of FWB with compatibility metrics and PDB with compatibility metrics
 • 158 – 415 Euro
Summary

FIMCAR proposal for updated frontal impact protocol
- FWDB with 50 km/h (lower impact speed acceptable if in line with dummy capabilities)
- ODB

Expected improvements
- Alignment of structures
- Improved restraint system performance

Disadvantages of FWRB
- Undesirable single point optimisation in wrong direction