Proposal for an amendment to Regulation No. 78 (Uniform provisions concerning the approval of vehicles of categories L1, L2, L3, L4 and L5 with regard to braking)

Submitted by the expert from International Motorcycles Manufacturers Association

The text reproduced below was prepared by the expert from IMMA in order to introduce amendments to clarify the text and introduce simplified test procedures in this regulation and align it with gtr 3. The modifications to the current text of the Regulation are marked in bold or strikethrough characters.

A. Proposal

Contents page, amend to read:

Annex 3 - Appendix 2- Method for the determination of peak braking coefficient (PBC)

Text of the Regulation, amend to read:

5.1.4. Parking brake system

If a parking brake system is fitted, it shall hold the vehicle stationary on the slope prescribed in paragraph 1.1.4 of Annex 3.

The parking brake system shall:

(a) Have a control which is separate from the service brake system controls; and

(b) Be held in the locked position by solely mechanical means.

Vehicles shall have configurations that enable a rider to be able to actuate the parking brake system while seated in the normal driving position.

For L2, L4 and L5, the parking brake system shall be tested in accordance with paragraph 8 of Annex 3.

Annex 3 Test Conditions, Procedures and Performance Requirements

1.1.3 Measurement of PBC

The PBC is measured as determined by the approval authority using either:

(a) The American Society for Testing and Materials (ASTM) E1136-93 (Reapproved 2003) standard reference test tyre, in accordance with
ASTM Method E1337-90 (Reapproved 2002), at a speed of 40 mph or
The method specified in Appendix 2 to this Annex.

PBC measurement of the surface shall be carried out at least once a
year. PBC measurement shall be completed prior to testing if any
major maintenance or alterations that may significantly modify the
PBC have occurred since the last measurement

(b) The method specified in Appendix 1 to this Annex.

Note: An alternative vehicle may be acceptable for PBC measurement by
method (b) if that vehicle has shown the same nominal PBC on both high \(\mu \)
and low \(\mu \) as previously determined by method (a). PBC measurement of
the surface shall be carried out at the same frequency as undertaken in
method (a).

1.1.4. Parking brake system tests

The specified test slope shall have a test surface gradient of 18 per cent
and shall have a clean and dry surface that does not deform under the mass of
the vehicle.

9. ABS tests

9.1. General:

(a) The tests are only applicable to the ABS fitted on vehicle categories L1 and L3;
(b) The tests are to confirm the performance of brake systems equipped with ABS
and their performance in the event of ABS electrical failure;
(c) "Fully cycling" means that the anti-lock system is repeatedly or continuously
modulating the brake force to prevent the directly controlled wheels from
locking.

9.3. Stops on a high friction surface:

9.3.1. Test conditions and procedure:

(d) Brake actuation force:
The force applied is that which is necessary to ensure that the ABS will cycle
fully be fully cycling throughout each stop, down to 10 km/h.

9.5. Wheel lock checks on high and low friction surface

9.5.1. Test conditions and procedure:

(e) Brake actuation force:
The force applied is that which is necessary to ensure that the ABS will cycle
fully be fully cycling throughout each stop, down to 10 km/h.

(f) Brake application rate:
The brake control actuation force is applied in 0.1 – 0.5 secs.

9.6. Wheel lock check - high to low friction surface transition:
9.6.1. Test conditions and procedure:

(e) Brake actuation force:
The force applied is that which is necessary to ensure that the ABS will cycle fully be fully cycling throughout each stop, down to 10 km/h.

9.7. Wheel lock check - low to high friction surface transition:

9.7.1. Test conditions and procedure:

(e) Brake actuation force:
The force applied is that which is necessary to ensure that the ABS will cycle fully be fully cycling throughout each stop, down to 10 km/h.

Appendix 1. Alternative Method for the Determination of Peak Braking Coefficient (PBC)

1.1. General

(e) The value of PBC shall be rounded to three two decimal places.

1.2. Vehicle condition:

(a) The test is applicable to vehicle categories L1 and L3.

(b) The anti-lock system shall be either disconnected or inoperative, inoperable between 40 km/h and 20 km/h.

(c) Lightly loaded.

(d) Engine disconnected.

Appendix 2. METHOD FOR THE DETERMINATION OF PEAK BRAKING COEFFICIENT (PBC)

(see paragraph 1.1.3. to this annex)

1.1 General

(a) The test is to establish a PBC of the test surface described in Annex 3, paragraphs 1.1.1. and 1.1.2.

(b) ASTM E 1136 should be used as a measuring tire.

(c) The test comprises a number of braking increasingly to a measuring tire installed to a measuring vehicle which is running by constant designated measuring speed.

In each measurement braking actuation force should be enough to reach to the maximum braking force for the measuring tire on the tested surface.
The designated measuring speed for the test surface described in Annex 3, paragraph 1.1.1 (High friction surface) and paragraph 1.1.2 (Low friction surface) shall be 64 km/h.

(d) The maximum braking force in each measurement is the highest value in the each measurement.

(e) The Peak Braking Coefficient (PBC) is calculated from the values of the maximum braking force, as follows:

\[PBC_n = \frac{B_n}{V_n} \]

where:

- \(PBC_n \) = the value of PBC for each braking
- \(B_n \) = the maximum braking force for each braking
- \(V_n \) = vertical load at the test wheel when braking force is the maximum

(f) The PBC of the test surface is calculated by averaging PBC values from each braking

\[PBC = \frac{PBC_1 + PBC_2 + \cdots + PBC_n}{n} \]

where:

- \(n \) = total measurement number; should be at least 8 to get a stable result

(g) The value of PBC shall be rounded to two decimal places.

1.2. Test apparatus condition:

(a) The wheel shall have a suspension capable of holding toe and camber changes to within ±0.05° with maximum vertical suspension displacement under both static and dynamic conditions.

(b) The test tire shall be provided a static load of 4586 ± 67 N.

(c) The test tire shall be the standard reference test tire (SRTT), as Specification E1136, mounted on a suitable 14 by 5.5-in. rim. The test tire inflation pressure shall be 241±3 kPa. When irregular wear or damage results from tests, or when wear or usage influences the test results, the use of the tire should be discontinued.

(d) When measuring on wet test surface, offset the test wheel sufficiently or deliver water just before a measurement wheel to prevent "tracking" of the forward wheel.

1.3. Test conditions and procedure

(a) Install an SRTT in the test position of the vehicle.

(b) Check and, if necessary, adjust the static load on the test tire.

(c) Check and adjust tire inflation pressure as required immediately before testing to specified value.
Perform pretest tire conditioning on a dry and level surface if using new tire. Tire shall be chirped ten times at 32 km/h under test load. If necessary, additional tire conditioning should be undertaken.

Conduct test at the required test vehicle speed. Maintain test speeds within ±1.6 km/h. It is recommended that peak braking coefficient measurement tests be conducted using the chirp-test methodology to minimize tire damage due to tire sliding.

Chirp-test refers to the progressive application of brake torque required to produce the maximum value of longitudinal braking force that will occur prior to wheel lockup, with subsequent brake release to prevent any wheel lockup (tire slide).

Brake is progressively applied until sufficient braking torque results to produce the maximum braking force that will occur prior to wheel lockup. Longitudinal force, vertical load, and vehicle speed are recorded.

Time to peak longitudinal force for high μ between 0.3 and 0.5 sec; for low μ, it may be necessary to use longer time to peak longitudinal force.

It is recommended to refer to ASTM E 1337 for data sampling rate and data calculation method.

But data sampling rate shall be at least 100 Hz, and additional data points if required.

B. Justification

1) Concern had been raised at the possible confusion of the regulation caused by the interpretation of the terms “inoperative” and “disconnected”. For the disconnected-method the brake-line pressure is the maximum braking pressure just before wheel-locking (higher pressure than ABS operating start) where as for the inoperative-method the brake-line pressure is lower than ABS operating start, so braking pressure during the PBC measurements, using the “K-method”, can be adjusted only lower than ABS operating range.

This amendment clarifies the situation by deleting both the terms and using the term “inoperative”. The dictionary definition for “inoperative” is “incapable of being implemented or operated; unworkable”

2) In previous regulations for the PBC measurements, the “K-method” was directly referenced but later a proposal was made to transfer the details in R78 as currently included in Appendix 1 to Annex 3. The amendment proposes to directly reference the ASTM method used for the purposes of PBC measurement.

3) For PBC measurements reference was made to the ASTM method but it was considered useful to have all the factors in an appendix to allow for clarity and reference especially as the referenced document is updated. The physical factors like measuring principle which affect the measuring data and precision are continued from ASTM E 1337-90 where as other factors which restrict the test method are not adopted or changed.

4) The simplified ASTM test method in Appendix 2 to Annex 3 allows the use of the ASTM Method without the trailer but other equivalent equipment. Measurement by a towed trailer method has some defect in that the movement can be unstable on a low μ friction surface where as a vehicle type measurement
method can get a more stable result. For the purpose of this simplified test method a representative vehicle is defined to avoid the type approval authorities needing extensive tests to measure the PBC.

5) Clarification of cross-references to ensure correct test is used for the right category of vehicles

6) Clarification is given on what should be considered as a representative vehicle

7) The clarification of “Fully cycling” ensures that brake force modulates repeatedly or continuously during ABS braking. This allows for a wider range of modulations, not limited to the traditional ABS cycles. The term “cycle fully” has been replaced by “fully cycling” in the text for sake of consistency.

“The force applied is that which is necessary to ensure that the ABS will cycle fully be fully cycling throughout each stop, down to 10 km/h.”

8) This amendment aligns R78 and GTR 3 with respect to the simple test method and also updates the use of SI units and change in decimal points.

9) It has been noticed in testing that the brake application rate specified in section 4.9.5.1 can result in a large number of test failures. If can be seen in the chart below that the 0.2 second lower limit shows a failure rate is between 30% and 50% of the time.

By reducing the lower limit to 0.1 seconds the test failure rate reduces to practically zero. Allowing the reduction tends to make the regulation more stringent by including a greater number of brake force application rates and eliminates restrictive test requirements.
