Working Paper No. HDH-09-09 (9th HDH meeting, 21 to 23 March 2012)

HD Hybrid Test Procedures

Morgan Andreae
Cummins Inc

HD Hybrid Test Procedures

- Hybrid engine powerpack testing
- NPRM to include hybrid criteria emissions
- Future Challenges

US EPA GHG Rule

- Three options for hybrid certification
 - Hybrid engine
 - Hybrid Vehicle
 - Chassis Dyno (full vehicle)
 - Powertrain Dyno (engine + transmission & simulated vehicle)

US EPA GHG Rule

- Hybrid engine option is vehicle independent
 - Aligns with conventional criteria emissions strategy (allows use of engine standards)
 - Provides way to avoid proliferation
 - Practical approach for commercial vehicle market

Hybrid Engine: Vehicle Independent Hybrid Certification

- Hybrid engine testing builds on existing procedures
 - Limit "brake" energy capture in realistic way
 - Apply same energy storage management criteria as for other hybrid test procedures
- Key challenge: Torque curve definition for hybrid
 - Torque curve may depend on energy storage system state
 - Define steady state & transient torque curve procedures

Testing Process – Steady state torque curve

Transient Torque Curve Mapping

- Evaluate peak torque at discrete points
- Allow energy storage level to return to target levels in between peaks
- Measure peak 3second average torque

Discrete Torque Curve Mapping Result

(Transient system torque curve)

Transient Cycle Results

Cycle	Fuel Used Mean (Std Dev)	Cycle Work Mean (Std Dev) [hp-hr]	Battery Energy Change Mean (Std Dev) [%fuel energy]
225/30 FTP, 30kW regen limit	2528.0	16.17	0.03
	(19.7)	(0.12)	(0.29)
225/30 FTP, vFTP regen limit	2643.1	16.64	-0.20
	(11.0)	(0.03)	(0.14)
225 FTP, 30kW regen limit	2139.1	13.47	0.21
	(13.1)	(0.01)	(0.21)

2012 NPRM

- EPA has announced that 2012 NPRM will include content to provide hybrid criteria emission certification option
 - Encourage system optimization by allowing evaluation of criteria performance using hybrid system
 - Avoid higher "real world" criteria emissions from hybrids
- Build on existing GHG hybrid certification options
 - Hybrid engine: FTP + SET
 - Hybrid vehicle: chassis & simulated chassis A to B comparison using vehicle cycles

Future Challenges for EPA: Align Cycles

- Currently engine and vehicle options use different cycles
- Preserve flexibility of multiple options, but align cycles
 - Ensure equivalent evaluation between methods
 - Allow comparison with existing standards and comparison to conventional performance

3/21/2012

Future Challenges

- Align cycles for different test procedures
 - Hybrid Engine: FTP + SET
 - Chassis: vFTP & vSET (SAE 2012-01-0878)
 - Powertrain: normalized cycle based on engine & vehicle cycles (ptFTP SAE ComVehC)

3/21/2012

US EPA Hybrid Rules & GTR Development

- EPA rulemaking is facing many of the same challenges as have been raised in the HD hybrid GTR development
- GTR development has the advantage of an engine cycle and a vehicle cycle that are already aligned (WHTC & WHVC)
 - Allows equivalent evaluation to conventional powertrains
- Vehicle independent hybrid certification option is practical solution for HD market
 - Equivalent to conventional vehicles
 - Reduce proliferation
 - Provide practical framework for off-highway hybrids
 - Definition of normalized powertrain cycle aligned with engine cycle is feasible