The important factor to develop test cycle

Prepared by Japan

$10^{\text {th }}$ DHC sub-group meeting under GRPE/WLTP informal group

11-12 October 2011
Brussels, Belgium

Driving energy

- In general, there are relationship between Fuel consumption (L/km) and Driving energy (Wh/km=J/km). Driving energy can be calculated as follows;

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{i}}=\mu r \cdot W \cdot \cos \theta_{i}+\mu a \cdot V_{i}^{2}+(W+\Delta W) \cdot \alpha_{i}+W \cdot g \cdot \sin \theta_{i} \\
& P_{i}=F_{i} \times V_{i} \\
& \text { (*) Work }[\mathrm{Nm}=\mathrm{J}]=\text { Force * Dist., Power }[\mathrm{J} / \mathrm{s}=\mathrm{W}]=\text { Work / time } \\
& E=\frac{\sum\left(P_{i}\right)}{x}=\frac{\sum\left(F_{i} \times V_{i}\right)}{x} \\
& \text { (*) Driving energy [J/km]=Cum. Work [Wh] / Dist. [km] } \\
& =\frac{\sum\left(\left(\mu r \cdot W \cdot \cos \theta_{i}\right) \cdot V_{i}+\mu a \cdot V_{i}^{3}+(W+\Delta W) \cdot \alpha_{i} \cdot V_{i}+W \cdot g \cdot \sin \theta_{i} \cdot V_{i}\right)}{x} \\
& =\mu r \cdot W \cdot \frac{\sum\left(\cos \theta_{i} \cdot V_{i}\right)}{x}+\mu a \cdot \frac{\sum\left(V_{i}^{3}\right)}{x}+(W+\Delta W) \cdot \frac{\sum\left(\alpha_{i} \cdot V_{i}\right)}{x}+W \cdot g \cdot \frac{\sum\left(\sin \theta_{i} \cdot V_{i}\right)}{x}
\end{aligned}
$$

When the road gradient is small, it is able to estimate $\cos \theta \doteqdot 1$, $\sin \theta \fallingdotseq \theta / 100$

$$
E \approx C_{1}+C_{2} \cdot \frac{\frac{\sum\left(V_{i}^{3}\right)}{x}+C_{3} \cdot \frac{\sum\left(\alpha_{i} \cdot V_{i}\right)}{x}+C_{4} \cdot \frac{\sum\left(\theta_{i} \cdot V_{i}\right)}{x}, \frac{1}{x}}{x}
$$

$>$ The important factors are "speed", "speed * acceleration" and "Time (frequency)".
$>$ It means that "speed-acceleration distribution" and "speed frequency distribution" are important.
$>$ DHC methodology
>speed-acceleration distribution (the least X^{2})
$>$ speed frequency distribution
>"Average speed", "acc./dec./cruise/idle ratio", RPA and so on

\Rightarrow RPA (Dynamics) is one of important factor. However we should also consider other parameter / frequency distribution.

One idea

$>$ We can modify test cycle which have dynamics based on original method.

$\frac{\sum\left(V_{i}^{3}\right)}{x}$: Relative_Cubic_Speed(RCS)
$\frac{\sum\left(\alpha_{i} \cdot V_{i}\right)}{x}$:Relative_Positive_Acceleration(RPA)
$\frac{\sum\left(\theta_{\mathrm{i}} \cdot \mathrm{V}_{\mathrm{i}}\right)}{\mathrm{x}}$: Relative_Positive_Gradient(RPG)

Relationship between Average speed and CO_{2} emission

$$
\mathrm{CO}_{2}=a * V^{2}+b * V+c * V^{-1}+C
$$

Cold / Hot ratio

NEDC

WLTC

Cold/Hot ratio should be considered

