GRPE / HDH Meeting Presentation of research institute: IFA, TU Vienna

Dipl.-Ing. Bernhard Schneeweiss

Development of an exhaust emissions and CO₂ measurement test procedure for heavy duty hybrids (HDH)

Tasks and research institutes

Task	TU Vienna	TU Graz	TRL	Chalmers
#1: Investigation and modification, if applicable, of the HILS model and interface	+++	++	++	+
#2: Investigation and modification, if applicable, of the HILS component testing	+++			
#3: Extension of HILS to non-electrical hybrids				+++
#4: Inclusion of PTO operation, which normally takes place outside the test cycle		+++	+++	+
#5: Development of WHVC weighting/scaling factors to represent real world vehicle operation		+++	+++	+

+++ main work; ++ single work package; + consulting and dialogue

Presentation

Institute for Powertrains & Automotive Engineering (IFA), TU Vienna

Researchers:

1 Univ.-Professor B. Geringer (Head of Institute)

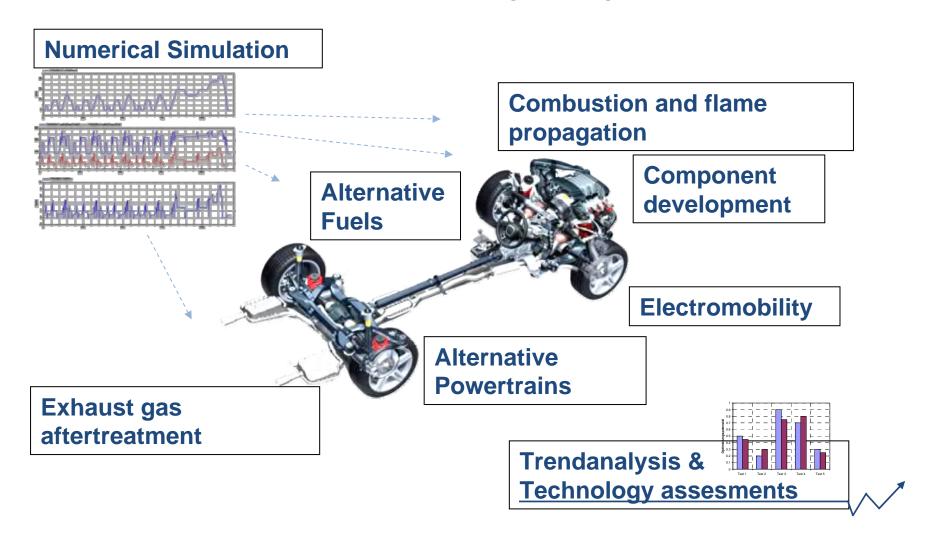
1 Ao. Univ.-Professor E. Pucher

1 Assoc.-Professor P. Hofmann

27 Scientific employees (Assistants)

26 Non-Scientific employees

Infrastructure:


- 13 Engine test beds
- 6 Air conditioned (down to -32°C)
- 2 highly dynamic
- 1 HiL test bed
- 1 4-wheel-Chassis dynanometer /w A/C (-32°C)
- Manufacturing of components and prototypes
- •in-house Linux-Cluster

Core Competences

Institute for Powertrains & Automotive Engineering (IFA), TU Vienna

Presentation

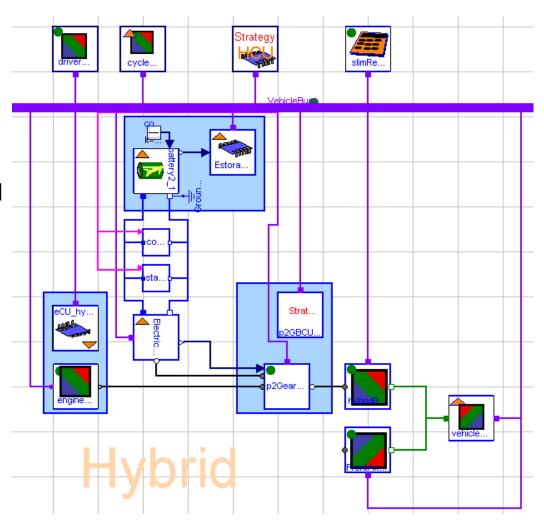
The HDH-HILS-Team at the IFA, TU Vienna

☐ Scientific guidance: Prof. Bernhard Geringer

Key researcher, Project coordination:Associate Prof. Dipl.-Ing. Dr.techn. Peter Hofmann

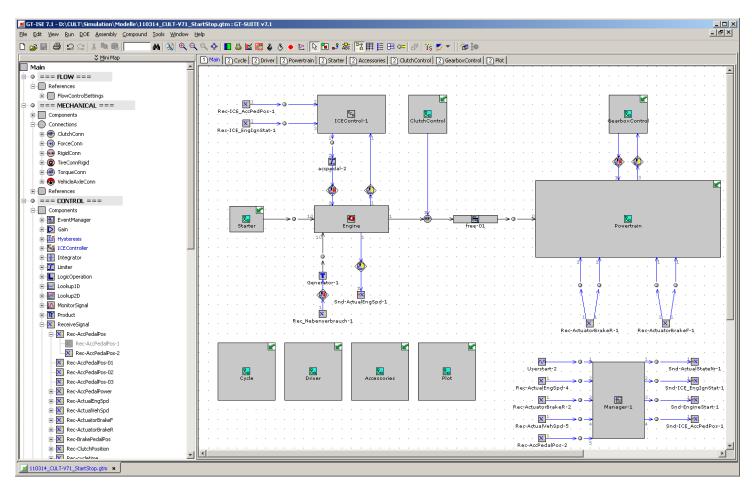
☐ Key researcher, Coordination of Simulation tasks: Assistant Prof. Dipl.-Ing. Dr.techn. Thomas Lauer

Research Assistant:Dipl.-Ing. Bernhard Schneeweiss



Simulation of vehicle's longitudinal dynamics (I)

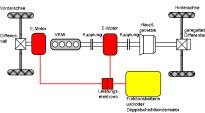
- □ In-house development of a longitudinal dynamics simulation model programmed in Dymola/Modelica
- ☐ Simulation of conventional and hybrid vehicles
- □ modular design
- ☐ library of components



Simulation of vehicle's longitudinal dynamics (II)

☐ Longitudinal dynamics simulation model using commercial Software "GT

Drive"



Project: "K-Net"

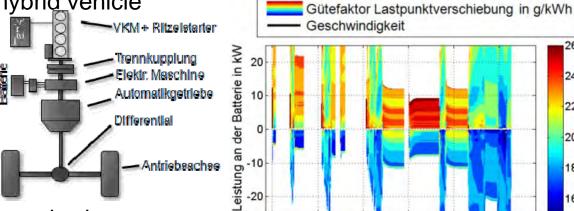
Phase 1: Analysis of alternative Powertrain Concepts

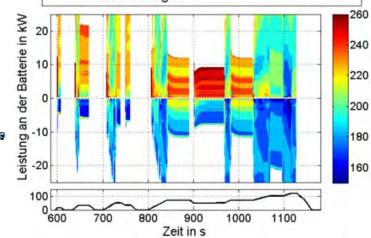
Phase 2: Development of a innovative Powertrain Concept

Phase 3: Development of the new subsystems and technologies

Phase 4: composition of subsystems on test beds and in vehicles

5. Phase: Scenarios of realisation



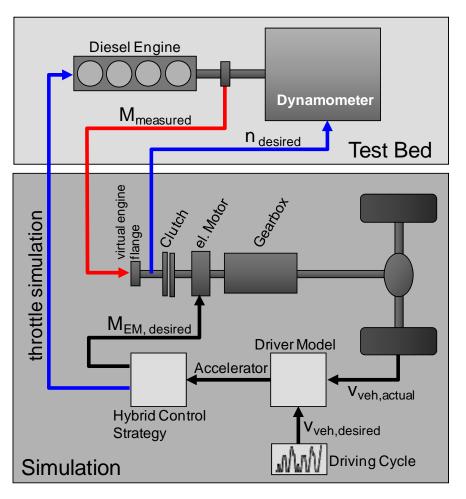


Project: "Mild Hybrid"

Longitudinal dynamics simulation, Development of optimized control

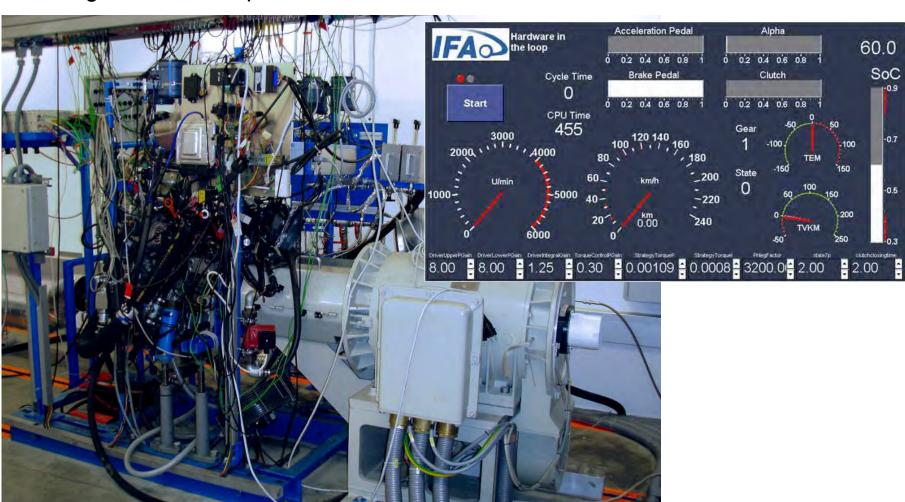
strategies for a Parallel hybrid vehicle

- Research on the engine test bed:
 - Determination of engine maps
 - Open-loop-control of speed and torque of the ICE
- Research on the Engine-in-the-Loop test bed
 - measurement of fuel consumption and pollutants using CVS-Method (official method for vehicle certification)
 - ICE: Hardware; vehicle including powertrain+hybrid components: simulation (closed-loop-control of ICE)



Engine-in-the-Loop-Simulation (I)

☐ Functional principle of Engine-in-the-Loop operation



Engine-in-the-Loop-Simulation (II)

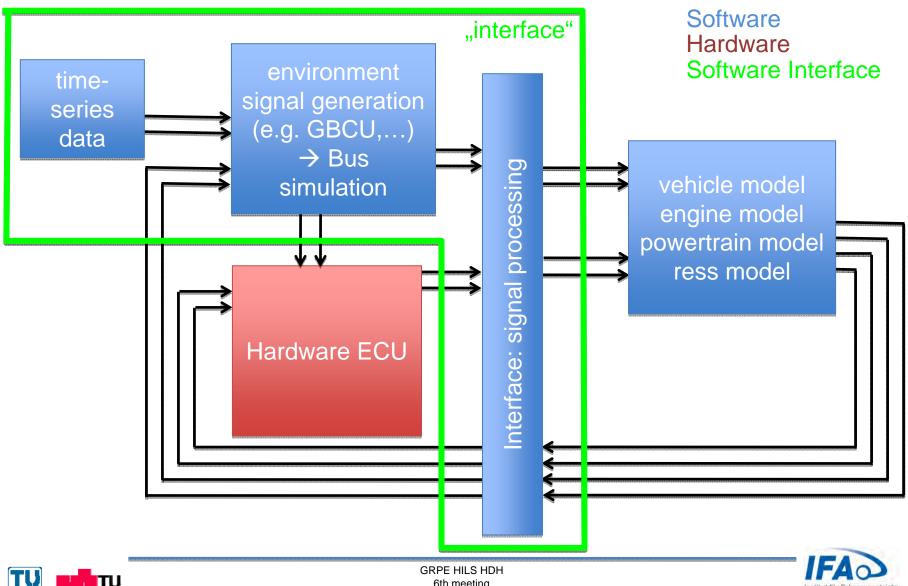
Engine-in-the-Loop test bed at IFA

60.0

SoC

IFA – PROJECT APPROACH

WP 1: Investigation and modification, if applicable, of the HILS model and interface; this should include a proposal for a verification method w/o vehicle testing


- ☐ Review of interface and software setup
 - Interface is used to connect real Hardware-Hybrid-ECU and simulated engine+powertrain.
 - Interface also provides vehicle-specific signals necessary for proper vehicle operation, which are not considered by the HW-ECU or SW-vehicle model (e.g. outputs of a Gearbox-conrol unit).
 - Investigations on different existing Interface models.
 - Goal 1: List of signals created/transmitted by interfaces under investigation.
 - Goal 2: List of conversions done by interfaces under investigation.

HILS Interface

connecting the simulation model and the Hardware ECU

& Automobiltechnik

IFA - PROJECT APPROACH

WP 1: Investigation and modification, if applicable, of the HILS model and interface; this should include a proposal for a verification method w/o vehicle testing

- ☐ Analysis of improvements and relevant gaps for a global regulation
 - Meetings with HDV manufacturers to determine the spectrum of current and future HDH powertrain configurations.
 - Meetings with HDV manufacturers to investigate which additional interface I/Os are needed.
 - Determination of the powertrains' necessary level of detail.
 - A requirement profile for the powertrain model and interface models will be created and compared to the japanese HIL models.
 - Necessary changes to the japanese HILS will be outlined.
- ☐ Analysis of the necessary preparation work to run a HIL system
 - Identification of requirements for test bed Hardware and Software, Laboratory infrastructure
 - Workflow for implementing the HIL System
 - Workflow for interface design (Hardware and Software)
 - Development of a common HILS test bed setup concept

IFA - PROJECT APPROACH

WP 2: Investigation and modification, if applicable, of the HILS component testing

Detailed review of the japanese test procedure for obtaining HIL input parameters
 Determination of map characteristics (ICE, Motor/Generator, Battery, Gearbox,) Evaluation of the required effort.
 Analysis of improvements and relevant gaps concerning component testing Assessment of the potential to minimize measuring effort. Identification of additional necessary measurements following a more detailed level of the simulation model (according to the suggestions made in WP1).
 Improvements for future technological development Assessment of possible future hybrid powertrain components and methods to obtain their characteristics for simulation purpose.

Time Schedule IFA - TU Vienna

WP	Subject KW	2011																				
		19	20 2	21 2	2 2	3 24	25	26 2	7 2	8 2	30	31	32	33 3	4 35	36	37	38 35	40	41	42	13 44
1	Review of interface and software setup													Ĭ		Ī			Ī		ij	
	Review completed																					
1	Analysis of improvements and relevant gaps for a global regulation																					
1	Meetings with OEM's and stakeholders																					
1	Analysis of the necessary preparation work to run a HILS system													Ĭ							Ī	
2	Detailed review of the test procedure for obtaining HIL input parameter															Ť					1	
2	Analysis of improvements and relevant gaps concerning component testing																					
2	Improvements for future technological development																					
	Final Report																					
	Final Report finished 1.Nov																					

Herzlichen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. Bernhard Schneeweiss bernhard.schneeweiss@ifa.tuwien.ac.at