Japan Research Activities in the GTR-7 Phase 2 IWG
Crash pulse research status based on Japan accident research and Vehicle rear impact test

JASIC/Japan
Feb. 2-3.2010
1. Accident analyses in Japan

2. Vehicle crash test

3. Sled pulse proposal
Trend of Rear-End Collision

- Rear-End Collisions account for 32% of all traffic accidents.
- The number of rear-end collisions reached the highest in 2004, and remain at this high level since then.

![Diagram showing trend and categories of traffic accidents]
The number of permanent disabilities by rear-end collisions have been significantly increasing in Japan since 1997.
• Minor neck injuries account for 92% of injuries to drivers in rear-end collisions.
AIS 1 (Minor) neck injury is the most frequent injury up to Delta V of 40km/h.

The number of injuries is the highest at less than 15km/h Delta V.

Tendency of AIS2+ neck injuries makes it difficult to analyze due to insufficient numbers.
AIS1 neck injury presented the highest percentage for both Delta V of less than and more than or equal to 20km/h.

Although the number of other injuries (upper & lower extremity, chest, abdomen, etc.) increases at delta V of 20km/h or more, AIS2+ neck injuries consist 2% even if delta V is 20km/h or more.
Head restraint GTR Phase 2 activities should aim to reduce minor neck injuries of WAD grade 2 or less (AIS1), especially long-term injuries (permanent disability).

The number of long-term injuries is the highest at 30 - 40 km/h crash recognition speed, which is about 16 - 22 km/h delta V.

Crash Recognition Speed
Speed at which the strike driver first recognizes a crash situation by perceiving the vehicle, person, object, etc.

Permanent Disabilities - Nervous Symptoms
“Traumatic cervical syndrome” (cervical spine sprain, cervical strain), which does not accompany any cervical spine bone or spinal cord injury such as dislocation or fracture of the cervical spine, is assessed as “disorder of the nervous symptom or mental disorder” if it is medically proven/explained that the future recovery cannot be expected.

Grade 12: With a local persistent neurological symptom
The symptom remaining in the head/neck, upper limb or back caused by traumatic cervical syndrome can be medically proven by objective findings such as those from neurological testing or images.

Grade 14: With a local neurological symptom
Although the symptom remaining in the head/neck, upper limb or back caused by traumatic cervical syndrome cannot be medically proven by objective findings such as those from neurological testing or images, its continuity/consistency is recognized from the situation where the injury occurred, progress of treatment, etc. and thus it can be explained, and it is medically presumed that it is...
Crash pulse study (Car to Car)

1. Car to Car Test to reproduce typical accident case (30-50km/h)

Provided from NSVA

Table 5.3.1. Acceleration Pulse Overview (car to car test) [3][4][5]
Crash pulse study (MRB to Car)

1. Car to MRB Test to reproduce 35km/h crash.

Provided from NSVA

Tp: Time during which the acceleration goes down after 90% of the maximum speed change is recorded [19]
Crash pulse study

Car to Car Test

<table>
<thead>
<tr>
<th>Car to Car</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4 *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak acceleration [m/s²]</td>
<td>101.9</td>
<td>162.7</td>
<td>162.7</td>
<td>53.9</td>
</tr>
<tr>
<td>Mean acceleration [m/s²]</td>
<td>47.63</td>
<td>80.07</td>
<td>78.60</td>
<td>27.44</td>
</tr>
<tr>
<td>Duration [ms]</td>
<td>111.6</td>
<td>107.7</td>
<td>105.0</td>
<td>128.5</td>
</tr>
<tr>
<td>Delta-V[km/h]</td>
<td>19.0</td>
<td>27.7</td>
<td>23.2</td>
<td>12.6</td>
</tr>
<tr>
<td>Impact speed [km/h]</td>
<td>35.2</td>
<td>49.9</td>
<td>30.1</td>
<td>29.1</td>
</tr>
</tbody>
</table>

* underride / override occurred

Proposed typical crash pulse

<table>
<thead>
<tr>
<th>Candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak acceleration [m/s²]</td>
</tr>
<tr>
<td>Mean acceleration [m/s²]</td>
</tr>
<tr>
<td>Duration [ms]</td>
</tr>
<tr>
<td>Delta V [m/s]</td>
</tr>
</tbody>
</table>

Moving Rigid Barrier to Car Test

<table>
<thead>
<tr>
<th>MRB to Car</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak acceleration [m/s²]</td>
<td>136.2</td>
<td>112.7</td>
<td>141.1</td>
</tr>
<tr>
<td>Mean acceleration [m/s²]</td>
<td>60.17</td>
<td>79.18</td>
<td>69.19</td>
</tr>
<tr>
<td>Duration [ms]</td>
<td>109.9</td>
<td>90.9</td>
<td>70.0</td>
</tr>
<tr>
<td>Delta-V[km/h]</td>
<td>17.2</td>
<td>17.9</td>
<td>17.6</td>
</tr>
<tr>
<td>Impact speed [km/h]</td>
<td>35.1</td>
<td>35.4</td>
<td>35.5</td>
</tr>
</tbody>
</table>
Crash pulse study (Pulse shape)

- Both car to car and MRB to car tests show “Triangle Shape Pulse”.

Reconstruction test case 1 (delta V=19km/h)

Reconstruction test case 2 (delta V=27.7km/h)

MRB to Car test case 1 (delta V=17.2km/h)

MRB to Car test case 2 (delta V=17.9km/h)
Test Pulse proposal

Following pulse is proposed.

- Delta V: 16 km/h 22 km/h
- Peak acceleration: 100 m/s² 130 m/s²
- Mean acceleration: 45 m/s² 70 m/s²
- Duration: 80 ms 110 ms
- Pulse shape: Triangle Shape Pulse

(Same as Euro NCAP mid pulse)
Repeatability Evaluation in case of 16km/h

Except for Upper neck MY, all other indicators show good repeatability.
Repeatability Evaluation in case of 20km/h

Reactive seat C: Upper FX and Upper My show large variation.
Repeatability CV. comparison between 16km/h and 20km/h

In case of 20km/h, variation tends to larger and out of limit.

Normal seat A Passive seat B Reactive seat C
Summary

- Pulse with Delta V: 16 – 22 km/h is appropriate pulse to evaluate long term injuries.
- In case of 16km/h delta V, the repeatability and reproducibility will be able to achieve reasonable condition with dummy variation reduction.
- In case of 20km/h delta V, the repeatability and reproducibility will be larger due to seat deformations variation.

Future Action

- Evaluate Repeatability and Reproducibility with new calibration method at 16km/h delta V and higher delta V.
Thank you for your attention!