Working paper number WLTP-DHC-03-04

Comparison of different European databases with respect to road category and time periods (on peak, off peak, weekend)

By H. Steven
04.04.2010

Introduction

- The methodology to develop the WLTP drive cycle requires the collection of in-use driving behaviour data and statistical information about the mileage for the following road categories and time periods within each road category:

1. Urban,
2. Rural,
3. Motorway,
a) On peak,
b) Off peak,
c) Weekend.

Introduction

- 2 different databases were analysed in order to determine the influence of time period and road category on the driving behaviour data.
- The following databases were used:

1. in-use data from Switzerland (CH),
2. in-use data from Belgium (BE),
3. In-use data from Berlin (DE, urban only).

- All CH and BE data is customer data, that means that routes and time periods were not predefined or influenced by third parties.
- The DE data was derived by a mid size car floating with the traffic.

Influence of time periods

- Table 1 shows for the different databases average speeds and stop percentages separated in road categories and time periods.
- Figures 1 to 3 show the corresponding vehicle speed distribution curves. Figures 4 and 5 show the short trip duration and stop phase duration distributions for the road category "urban". Figure 6 shows the RPA values of the short trips vs average speed for the different time periods and urban.
- Only some cases reflect the expected trend. The differences between the time periods are smaller than the differences between locations/databases. Even the RPA values show a high overlap between the time periods.

Influence of time periods

Region	road cat	Period	v_ave in km / h	stop percentage	v_ave without stops in km / h	mileage distribution in database
BE	motorway	on peak	83.4	2.7%	85.7	42.6%
BE	motorway	off peak	101.9	1.5%	103.4	43.6%
BE	motorway	weekend	105.6	3.3%	109.3	13.9%
BE	rural	on peak	45.5	11.8%	51.6	45.7%
BE	rural	off peak	45.6	10.6%	51.0	28.1%
BE	rural	weekend	48.6	8.4%	53.0	26.2%
BE	urban	on peak	30.7	14.8%	36.0	49.5%
BE	urban	off peak	26.9	17.7%	32.7	28.8%
BE	urban	weekend	24.9	20.6%	31.3	21.7%
CH	motorway	on peak	90.8	2.8%	93.4	47.0%
CH	motorway	off peak	98.9	1.6%	100.5	41.5%
CH	motorway	weekend	98.0	1.7%	99.6	11.5%
CH	rural	on peak	46.1	9.8%	51.0	45.3%
CH	rural	off peak	43.0	13.9%	49.9	44.2%
CH	rural	weekend	40.3	15.7%	47.8	10.5%
CH	urban	on peak	22.0	30.5%	31.7	32.2%
CH	urban	off peak	24.0	27.9%	33.3	52.4%
CH	urban	weekend	25.7	26.1%	34.8	15.4%
DE	urban	on peak	16.6	34.9%	25.5	23.1%
DE	urban	off peak	25.4	23.9%	33.4	54.2%
DE	urban	weekend	27.7	23.2%	36.1	22.7%

Table 1

Vehicle speed distributions

Figure 1

Vehicle speed distributions

Vehicle speed distributions

Figure 3

Short trip duration distributions

Stop phase duration distributions

RPA versus average speed

RPA versus average speed

RPA versus average speed

Influence of time periods

- The Belgium data could be separated into different cities/regions.
- Table 2 shows the average speeds and stop percentages for different cities/regions.
- Figure 7 shows the vehicle speed distribution curves for some cities separated for the 3 time periods. Figure 8 shows the vehicle speed distributions for the several cities/regions for the time period "on peak". Figure 9 shows the short trip duration distributions for the road category "urban".
- The differences between the cities/regions are much higher than the differences between the time periods.

Influence of time periods

City/region	road cat	Period	v_ave in km/h	stop percentage	v_ave without stops in km/h	mileage distribution in database
Bocholt-Kaulille	motorway	on peak	108.6	0.0%	108.6	10.1%
Bocholt-Kaulille	motorway					
Bocholt-Kaulille	motorway	weekend	93.0	1.1%	94.0	75.0%
Bocholt-Kaulille	rural	on peak	54.5	0.6%	110.1	14.9%
Bocholt-Kaulille	rural	off peak	53.3	7.7%	58.5	58.4%
Bocholt-Kaulille	rural	weekend	58.2	4.6%	57.7	21.3%
Bocholt-Kaulille	urban	on peak	25.8	17.4%	31.0	20.2%
Bocholt-Kaulille	urban	off peak	23.3	22.6%	30.1	52.4%
Bocholt-Kaulille	urban	weekend	28.3	13.6%	32.7	26.3%
Brugge	motorway	on peak	99.1	1.3%	100.3	58.9%
Brugge	motorway	off peak	110.0	0.2%	110.2	36.2%
Brugge	motorway	weekend	110.7	0.8%	111.5	4.9%
Brugge	rural	on peak	45.0	9.5%	49.8	40.9%
Brugge	rural	off peak	41.5	12.5%	47.4	38.8%
Brugge	rural	weekend	50.3	6.7%	53.9	20.2%
Brugge	urban	on peak	27.7	19.7%	34.5	38.7%
Brugge	urban	off peak	28.8	15.0%	33.8	41.3%
Brugge	urban	weekend	30.4	15.7%	36.1	19.9%

Table 2a

Influence of time periods

City/region	road cat	Period	v_{2} ave in km / h	stop percentage	v_ave without stops in km / h	mileage distribution in database
Brussels region	motorway	on peak	65.3	4.5%	68.3	55.4%
Brussels region	motorway	off peak	96.1	2.0%	98.1	25.5%
Brussels region	motorway	weekend	99.6	4.3%	104.1	19.0%
Brussels region	rural	on peak	29.0	28.1%	40.3	41.2%
Brussels region	rural	off peak	38.8	15.7%	46.0	29.8%
Brussels region	rural	weekend	40.6	13.7%	47.1	29.0%
Brussels region	urban	on peak	38.4	5.8%	40.8	68.4%
Brussels region	urban	off peak	29.3	14.2%	34.2	15.3%
Brussels region	urban	weekend	26.7	16.2%	31.9	16.3%
Gent	motorway	on peak	74.6	3.6%	77.4	55.8%
Gent	motorway	off peak	88.9	1.9%	90.7	34.7%
Gent	motorway	weekend	100.5	3.2%	103.8	9.5%
Gent	rural	on peak	30.7	18.9%	37.9	32.2%
Gent	rural	off peak	35.6	15.3%	42.0	33.9%
Gent	rural	weekend	33.1	18.7%	40.7	33.9%
Gent	urban	on peak	19.7	16.8%	23.7	37.7%
Gent	urban	off peak	23.1	10.3%	25.7	35.0%
Gent	urban	weekend	18.0	18.9%	22.2	27.4%

Influence of time periods

City/region	road cat	Period	v_ave in km/h	stop percentage	v_ave without stops in km/h	mileage distribution in database
Leuven region	motorway	on peak	88.3	3.9\%	91.9	34.5\%
Leuven region	motorway	off peak	112.2	0.0\%	112.2	60.8\%
Leuven region	motorway	weekend	116.5	0.0\%	116.5	4.7\%
Leuven region	rural	on peak	39.2	12.9\%	45.1	46.1\%
Leuven region	rural	off peak	46.8	12.9\%	53.8	42.1\%
Leuven region	rural	weekend	42.9	14.5\%	50.2	11.8\%
Leuven region	urban	on peak	26.1	9.4\%	28.8	53.5\%
Leuven region	urban	off peak	31.2	6.5\%	33.4	32.3\%
Leuven region	urban	weekend	28.8	8.8\%	31.6	14.2\%
Lommel	rural	on peak	56.2	9.7\%	62.2	70.0\%
Lommel	rural	off peak	53.9	8.0\%	58.6	12.5\%
Lommel	rural	weekend	52.7	9.3\%	58.1	17.5\%
Lommel	urban	on peak	35.4	9.6\%	39.2	63.6\%
Lommel	urban	off peak	33.3	9.6\%	36.8	16.6\%
Lommel	urban	weekend	32.0	12.8\%	36.7	19.8\%

Influence of time periods

City/region	road cat	Period	v_ave in km/h	stop percentage	v_ave without stops in km/h	mileage distribution in database
Nieuwerkerken	motorway	on peak	86.6	12.1\%	98.5	2.0\%
Nieuwerkerken	motorway	off peak	106.5	1.9\%	108.6	83.7\%
Nieuwerkerken	motorway	weekend	99.4	8.0\%	108.1	14.3\%
Nieuwerkerken	rural	on peak	38.8	11.0\%	43.6	9.8\%
Nieuwerkerken	rural	off peak	46.5	7.5\%	50.3	54.4\%
Nieuwerkerken	rural	weekend	43.6	10.5\%	48.7	35.8\%
Nieuwerkerken	urban	on peak	15.9	43.5\%	28.2	9.7\%
Nieuwerkerken	urban	off peak	25.6	20.1\%	32.0	58.0\%
Nieuwerkerken	urban	weekend	17.3	38.5\%	28.1	32.3\%
Tervuren	motorway	on peak	104.5	0.4\%	104.9	54.2\%
Tervuren	motorway	off peak	116.1	0.0\%	116.1	9.3\%
Tervuren	motorway	weekend	116.5	0.1\%	116.5	36.5\%
Tervuren	rural	on peak	39.5	14.4\%	46.2	52.3\%
Tervuren	rural	off peak	44.9	11.1\%	50.5	21.9\%
Tervuren	rural	weekend	47.1	9.2\%	51.9	25.8\%
Tervuren	urban	on peak	32.8	12.4\%	37.5	51.8\%
Tervuren	urban	off peak	33.2	10.4\%	37.1	21.7\%
Tervuren	urban	weekend	36.3	7.3\%	39.1	26.4\%

Vehicle speed distributions

Vehicle speed distributions

Vehicle speed distributions

Vehicle speed distributions

Short trip duration distributions

Short trip duration distributions

Short trip duration distributions

Influence of time periods

- The Swiss data could be separated into roads with different speed limits.
- Table 3 shows the average speeds and stop percentages for different cities/regions.
- Figure 10 shows the vehicle speed distribution curves for some speed limits separated for the 3 time periods.
- The influence of the time period is small compared to other influencing parameters.

Influence of time periods

speed limit in km/h	Period	v_ave in km / h	stop percentage	v_ave without stops in km / h	mileage distribution in database
30	on peak	14.3	39.6%	23.6	32.8%
30	off peak	12.9	44.5%	23.3	47.3%
30	weekend	14.7	43.8%	26.2	19.8%
40	on peak	20.1	29.1%	28.3	34.2%
40	off peak	18.9	32.6%	28.1	51.9%
40	weekend	20.6	27.3%	28.3	13.9%
50	on peak	25.7	26.1%	34.8	34.2%
50	off peak	27.5	22.5%	35.5	51.5%
50	weekend	29.4	20.5%	36.9	14.3%
60	on peak	32.2	20.7%	40.6	34.8%
60	off peak	35.4	19.1%	43.7	49.8%
60	weekend	36.2	19.1%	44.8	15.4%

Table 3a

Influence of time periods

speed limit in km / h	Period	v _ave in km / h	stop percentage	v_ave without stops in km / h	mileage distribution in database
70	on peak	56.0	6.6%	59.9	45.0%
70	off peak	56.6	5.1%	59.6	44.2%
70	weekend	56.9	1.3%	57.7	10.8%
80	on peak	61.3	5.3%	64.8	47.0%
80	off peak	71.1	2.4%	72.9	42.9%
80	weekend	73.6	0.3%	73.9	10.1%
100	on peak	90.6	1.3%	91.8	44.9%
100	off peak	98.0	0.7%	98.6	43.9%
100	weekend	99.8	0.1%	99.9	11.2%
120	on peak	103.3	0.5%	103.8	48.3%
120	off peak	111.6	0.2%	111.9	40.1%
120	weekend	107.2	0.4%	107.7	11.6%

Table 3b

Vehicle speed distributions

Vehicle speed distributions

Vehicle speed distributions

Vehicle speed distributions

Figure 10d

Vehicle speed distributions

Road categories

- The second part of this presentation is dedicated to road categorization.
- The Belgium and Swiss databases contained the road category as classification parameter. For the German database this was only partly the case. The non classified parts were classified on the basis of the speed pattern design.
- There might be a risk that the categorization for different databases is based on different criteria.
- Furthermore, the main problem is caused by the fact that the road category can vary during one short trip.

Road categories

- The average short trip durations and distances are significantly different between the Swiss and Belgium database (see table 4).
- The Swiss motorway and rural short trips are significantly longer than the Belgium short trips. For urban it is the other way round.
- The average short trip duration values for motorway could be misinterpreted. 436 s for the BE database seems to be appropriate for a cycle length of 600 s .
- But this average value has nearly no shares in the database. Due to the high amount of congestion, 50\% of the short trips are 200 s or shorter. 20\% are 900 s or longer.

Short trips and road categories

road category	average short trip duration in s	
	CH	
motorway	BE	
rural	335	
urban	70	436
	average short trip distance in m	
	CH	BE
motorway	18462	160
rural	5964	2239
urban	650	898

Table 4

Road categories

- Table 5 shows the categorization of the short trips with respect to the number of road categories per trip.
- About 50\%/70\% of the short trips in the Belgium/Swiss database are dedicated to one road category only.

Short trips and road categories

	short trip category	number	percentage
BE	short trips with 3 road categories	2210	10.5%
	short trips with 2 road categories	7857	37.2%
	short trips with 1 road category	11070	52.4%
	total number of short trips	$\mathbf{2 1 1 3 7}$	$\mathbf{1 0 0 . 0 \%}$
$\mathbf{C H}$	short trips with 3 road categories	914	6.0%
	short trips with 2 road categories	3394	22.3%
	short trips with 1 road category	10918	71.7%
	total number of short trips	$\mathbf{1 5 2 2 6}$	$\mathbf{1 0 0 . 0 \%}$

Road categories

- As already mentioned, the Swiss data can be categorized to speed limits.
- Table 6 shows the categorization with respect to the number of different speed limits per short trip.
- Less than 50\% of the short trips are dedicated to one speed limit only.
- This is important, because the speed limit is one of the most important parameter for the vehicle speed pattern (see figure 10).
- Figure 11 shows the RPA values vs average speed of short trips separated for the number of speed limits per trip. Above 60 km/h nearly all trips consist of parts with different speed limits.

Short trips and road categories

	short trip category	number	percentage
CH	short trips with 9 speed limits	2	0.0\%
	short trips with 8 speed limits	36	0.2\%
	short trips with 7 speed limits	98	0.6\%
	short trips with 6 speed limits	245	1.6\%
	short trips with 5 speed limits	395	2.6\%
	short trips with 4 speed limits	714	4.7\%
	short trips with 3 speed limits	1857	12.2\%
	short trips with 2 speed limits	4490	29.5\%
	short trips with 1 speed limit	7389	48.5\%
	total number of short trips	15226	100.0\%

RPA versus average speed

Road categories

- Figure 12 shows the vehicle speed distributions of the BE, CH and DE databases.
- The smallest differences can be found for the urban parts. For the rural parts the BE and CH distributions are close together, while the DE distribution has significantly higher speeds.
- Differences in speed limits for rural roads (BE: 90 km/h, CH: 80/100 km/h, DE: 100 km/h) could be one reason.
- Another explanation is related to the classification approach. The Swiss road categorization is area based rather than speed limit based, the German categorization is speed limit based.

Road categories

- If the Swiss categorization would also be based on speed limit, the rural distribution curve would be shifted to significantly higher speeds, while the distribution curves for urban and motorway would be changed nearly insignificant (see figure 13).
- The differences in the motorway distributions reflect the differences in speed limit (BE and CH: $120 \mathrm{~km} / \mathrm{h}$, DE: no general speed limit).
- The differences between the BE and CH motorway distributions in the speed range below $80 \mathrm{~km} / \mathrm{h}$ reflect the fact that the BE distribution contains much more congestions than the Ch distribution (see figure 14).

Vehicle speed distributions

Vehicle speed distributions

RPA versus average speed

RPA versus average speed

Vehicle speed categories

- In order to overcome the problems outlined in the previous pages the Japanese colleagues propose to replace "urban", "rural" and "motorway" by "low", "medium" and "high" speed ranges and base the categorization on the maximum speed of the short trips.
- This approach can be supported in principle, but it needs to be assessed where the appropriate borderlines would be for Europe and whether v_max is sufficient as discriminator.
- In order to enable a first assessment, v_max was plotted versus v_ave for the BE and Ch databases (see figure 15)

Max. speed versus average speed

Max. speed versus average speed

Vehicle speed categories

- A first calculation was performed using a combination of $v _m a x$ and $v _$ave borderlines.
- In addition 2 scenarios were calculated based on v_max borderlines only.
- In figure 16 the results are compared to the original distributions.
- The combined scenario and the v_max scenario with 70 km/h and 110 km/h borderlines lead to good agreement with the original distributions for urban and motorway, but shift the rural distribution to higher speeds.

Vehicle speed categories

- The v_max scenario with 60 km/h and 100 km/h borderlines lead to good agreement with the original distributions for rural but shifts the distributions for urban and motorway to significantly lower speeds.
- The v_max scenario with 70 km/h and 110 km/h borderlines could be an acceptable compromise.

Vehicle speed distributions

Vehicle speed distributions

Vehicle speed categories

- Figure 15 shows that the maximum speed of 120 km/h on motorways is exceeded by a significant number of short trips in Belgium as well as in Switzerland.
- For the Swiss database could be checked whether tis is also the case for rural and urban roads, since the speed limit is known.
- Figure 17 shows the results for speed limits between $30 \mathrm{~km} / \mathrm{h}$ and $120 \mathrm{~km} / \mathrm{h}$.
- The time percentages for a transgression of the speed limit varies between 10\% and 30\%. The lowest rates were found for speed limits between 40 and 60 km / h, the highest for rural roads and motorways.

Vehicle speed distributions

Vehicle speed distributions

Figure 17b

Conclusions

- Concerning the time periods "on peak", "off peak" and "weekend" the differences in vehicle speed distributions as well as short trip and stop phase duration distributions are smaller than the differences between locations/databases or cities/regions within one country.
- Even the RPA values show a high overlap between the time periods.
- The Belgium data shows that "off peak" in one city/region could be "on peak" in another city/region and vice versa.

Conclusions

- Furthermore, since it is difficult to get reliable statistical mileage data for the different time periods and since there is sufficient overlap between the time periods with respect to the dynamics of the short trips, it is recommended to skip this parameter.
- Regarding the road categorization the problems are outlined and the Japanese proposal for an alternative categorization based on the maximum speed of the short trips was assessed.
- The v_max scenario with 70 km/h and 110 km/h borderlines was found to be an acceptable compromise for European data.

Conclusions

- The Swiss data enabled an assessment of the compliance rate with speed limits.
- The time percentages for a transgression of the speed limit varies between 10\% and 30\% of the driving time. The lowest rates were found for speed limits between 40 and 60 km/h, the highest for rural roads and motorways.
- An analysis of in-use driving behaviour data from the US and China, whose results cannot be presented yet, confirm/support the above stated conclusions.

