Proposal for In-use Data Conversion Technique

(Re-Categorization of in-use data)

proposed by Japan

DHC group

under GRPE/WLTP informal group

version 1: 22 March 2010

(*) WLTC : Worldwide harmonized Light duty driving Test Cycle

1. Purpose

- ➤ It was agreed that each CP has its own unique definition of each road type (urban/rural/motorway) during its 1st DHC meeting. This may lead the discrepancy on speed-acceleration distribution among CPs in same road category.
- This document describes the technique to convert the in-use data into vehicle speed oriented categories.
 - ✓ urban/rural/motorway -> low/middle/high speed
 - ✓ This technique can be used for other re-categorization including more than three (3) divisions

2. Definition of Road Type

	Urban	Rural	Motorway
India	Paved roads in urban areas with a speed limit ≤40 km/hour (exclude mountain areas)	Paved non-motorways outside and inside urban areas with a speed limit between 40 and 60 km/hour	Paved motorways (multi-lane roads specifically constructed and controlled for fast traffic) with a speed 60 to 80 km/hour
Korea	Arterial, collector and local road inside and/or near central business district (CBD). Speed limit is from 40 to 80 km/h, depends on road type	Arterial, collector and local road inside non-urban area. Speed limit is from 50 to 80 km/h, depends on road type	Motorway which is designed, constructed and controlled for faster traffic in urban and rural area. Speed limit is from 100 to 120 km/h, depends on area
Japan	Densely Inhabited District (DID) • Speed limit ≤ 60km/h • exclude mountain areas	Non-Densely Inhabited DistrictNon motorwaysexclude mountain areas	Motorways (within City and between Cities) • exclude mountain areas

3.1. Data analysis process - Step A-1 -

- ➤ Categorize the collected data into original matrix with weighting factor
 - < Matrix : road type/vehicle category/time period >
- > Record the collected data duration in each matrix

➤ Collected data set

Road	Urban		Rural			Motorway			
type	e Weekday		Weekday		Weekd		cday		
Vehicle category	On-peak	Off-peak	Week- end	On-peak	Off-peak	Week- end	On-peak	Off-peak	Week- end
Passenger Car									
Light Duty Commercial Vehicle									

3.1. Data analysis process - Step A-2 -

➤ Weighting factor matrix

road		veh	icle	congestion		
	wu	PC	w _{U,PC}	on peak	W _{U,PC,ON}	
				off peak	W _{U,PC,OFF}	
urban				weekend	W _{U,PC,E}	
urbari			w _{U,LCV}	on peak	w _{U,LCV,ON}	
		LCV		off peak	W _{U,LCV,OFF}	
				weekend	W _{U,LCV,E}	
	W _R	PC	W _{R,PC}	on peak	W _{R,PC,ON}	
				off peak	W _{R,PC,OFF}	
rural				weekend	W _{R,PC,E}	
Turai		LCV	W _{R,LCV}	on peak	W _{R,LCV,ON}	
				off peak	W _{R,LCV,OFF}	
				weekend	W _{R,LCV,E}	
		PC W _{M,PC} off pea	w _{M,PC}	on peak	W _{M,PC,ON}	
				off peak	W _{M,PC,OFF}	
motorway	w_M		weekend	W _{M,PC,E}		
	ννM	LCV	W _{M,LCV}	on peak	W _{M,LCV,ON}	
				off peak	W _{M,LCV,OFF}	
				weekend	W _{M,LCV,E}	
sum	1	sum	1	sum	1	

➤ The collected data duration

road		veh	icle	congestion		
	Tu	PC	$T_{U,PC}$	on peak	$T_{U,PC,ON}$	
				off peak	$T_{U,PC,OFF}$	
urban				weekend	$T_{U,PC,E}$	
urbari			T _{U,LCV}	on peak	$T_{U,LCV,ON}$	
		LCV		off peak	$T_{U,LCV,OFF}$	
				weekend	$T_{U,LCV,E}$	
	T_R	PC	T_R,PC	on peak	$T_{R,PC,ON}$	
				off peak	$T_{R,PC,Off}$	
rural				weekend	$T_{R,PC,E}$	
Turai		LCV	T _{R,LCV}	on peak	$T_{R,LCV,ON}$	
				off peak	$T_{R,LCV,OFF}$	
				weekend	$T_{R,LCV,E}$	
		PC	$T_{M,PC}$	on peak	$T_{M,PC,ON}$	
motorway				off peak	$T_{M,PC,OFF}$	
	T_M			weekend	$T_{M,PC,E}$	
	М	LCV	T _{M,LCV}	on peak	$T_{M,LCV,ON}$	
				off peak	$T_{M,LCV,OFF}$	
				weekend	$T_{M,LCV,E}$	

It is expected that the collected data volume in each matrix doesn't match the weighting factor obtained based on vehicle statistical information.

3.2. Data analysis process - Step B -

Need to compensate the weighting factor of each matrix since the specific short trip is possible to move into different matrix.

(1) Calculate the compensated weighting factor (w_i')

road		veh	icle	congestion		
	Wυ	PC	w _{U,PC}	on peak	w _{U,PC,ON} '	
				off peak	W _{U,PC,OFF}	
urban				weekend	w _{U,PC,E} ,	
arbari			w _{u,LCV}	on peak	w _{U,LCV,ON}	
		LCV		off peak	w _{U,LCV,OFF}	
				weekend	w _{U,LCV,E} '	
	W _R	PC	W _{R,PC}	on peak	W _{R,PC,ON} '	
				off peak	W _{R,PC,OFF} '	
rural				weekend	w _{R.PC,E} '	
rarar		LCV	w _{R,LCV}	on peak	W _{R,LCV,ON}	
				off peak	w _{R,LCV,OFF}	
				weekend	w _{R,LCV,E} '	
	W _M	PC	W _{M,PC}	on peak	w _{M,PC,ON} ,	
				off peak	W _{M,PC,OFF}	
motorway				weekend	w _{M,PC,E} '	
		LCV	W _{M,LCV}	on peak	w _{M,LCV,ON}	
				off peak	w _{M,LCV,OFF}	
				weekend	w _{M,LCV,E}	
sum	1	sum	1	sum	1	

$$W_{U,PC,ON}' = \frac{W_{U,PC,ON}}{T_{U,PC,ON}} \times A_{U,PC}$$

$$W_{U,PC,OFF}' = \frac{W_{U,PC,OFF}}{T_{U,PC,OFF}} \times A_{U,PC}$$

$$W_{U,PC,E}' = \frac{W_{U,PC,E}}{T_{U,PC,E}} \times A_{U,PC}$$

$$where$$

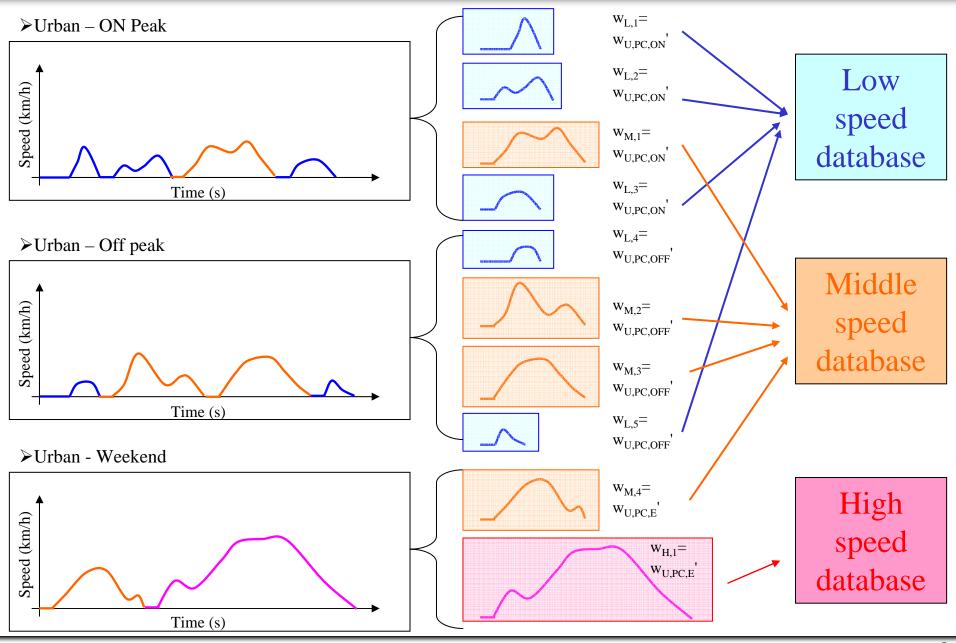
$$A_{U,PC} = \frac{W_{U,PC,ON} + W_{U,PC,OFF} + W_{U,PC,E}}{\frac{W_{U,PC,ON}}{T_{U,PC,ON}} + \frac{W_{U,PC,OFF}}{T_{U,PC,OFF}} + \frac{W_{U,PC,E}}{T_{U,PC,E}}$$

Same equation will be applied to others

3.3. Data analysis process - Step C-1 -

Convert the each short trip data including the previous idling portion into new categories (Low/Middle/High) from original (Urban/Rural/Motorway) categories with the compensated WF (w')

criteria: maximum vehicle speed of each short trip


Proposed Criteria:

Phase	Max. speed of each ST
Low speed	~ 40* km/h
Middle speed	40* ~ 80* km/h
High speed	80* km/h ~

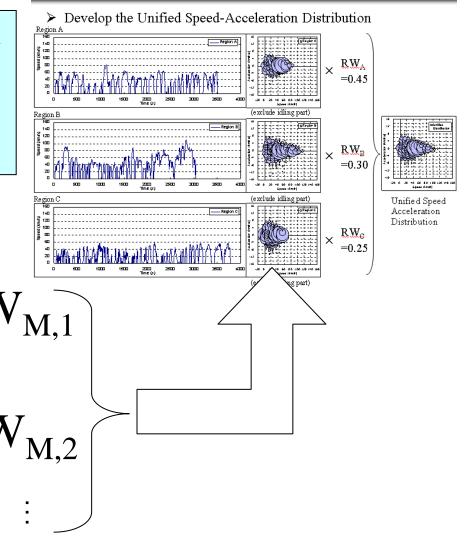
*) the specific vehicle speed subject to change based on the collected data.

WLTP-DHC-03-02

3.3. Data analysis process - Step C-2 -

The collected data was converted into new categories. New weighting factors (w_L , w_M , w_H) are calculated as follows.

$$\begin{split} w_{_{L}} &= \frac{\sum\limits_{_{i}} \left(w_{_{L,i}} \times T_{_{L,i}}\right)}{\sum\limits_{_{i}} \left(w_{_{L,i}} \times T_{_{L,i}}\right) + \sum\limits_{_{i}} \left(w_{_{M,i}} \times T_{_{M,i}}\right) + \sum\limits_{_{i}} \left(w_{_{H,i}} \times T_{_{H,i}}\right)} \\ w_{_{M}} &= \frac{\sum\limits_{_{i}} \left(w_{_{L,i}} \times T_{_{L,i}}\right) + \sum\limits_{_{i}} \left(w_{_{M,i}} \times T_{_{M,i}}\right) + \sum\limits_{_{i}} \left(w_{_{H,i}} \times T_{_{H,i}}\right)}{\sum\limits_{_{i}} \left(w_{_{H,i}} \times T_{_{L,i}}\right) + \sum\limits_{_{i}} \left(w_{_{H,i}} \times T_{_{H,i}}\right)} \\ w_{_{H}} &= \frac{\sum\limits_{_{i}} \left(w_{_{L,i}} \times T_{_{L,i}}\right) + \sum\limits_{_{i}} \left(w_{_{M,i}} \times T_{_{M,i}}\right) + \sum\limits_{_{i}} \left(w_{_{H,i}} \times T_{_{H,i}}\right)}{\sum\limits_{_{i}} \left(w_{_{L,i}} \times T_{_{L,i}}\right) + \sum\limits_{_{i}} \left(w_{_{M,i}} \times T_{_{M,i}}\right) + \sum\limits_{_{i}} \left(w_{_{H,i}} \times T_{_{H,i}}\right)} \end{split}$$


- This process will be done in each data collection CPs.
- > Then, move on to
 - "2.2.3. Test Cycle Development Step3 in WLTP-DHC-02-04" with slight modification.

3.5. Data analysis process – Modification 1 -

➤ Speed-Acceleration distribution of each short trip should be multiplied by the compensated weighting factors (w').

M,1

M,2

2.2.3. Test Cycle Development - Step3 - sample of data analysis

3.5. Data analysis process – Modification 2 -

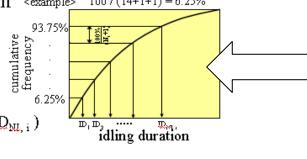
Frequency distribution for idling & short trip duration also should be multiplied by the compensated weighting factors (w').

93.33%

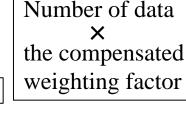
6.67%

2.2.5. Test Cycle Development - Step5 -

Determine the $N_{I, i}$ units of idling duration < example> 100 / (14+1+1) = 6.25% in each phase


√ Generate the cumulative frequency graph based on idling data base

✓ Divide into (N_{1,i}+1) equally in Y axis


 $\checkmark\,N_{I,\,i}$ units of idling duration ($ID_1,\,ID_2,\,.....,\,I\!D_{N\!I,\,i}$) in each phase are decided

➤ Determine the N_{ST, i} units of short trip duration in each phase

- ✓ Generate the cumulative frequency graph based on short trip data base
- ✓ Divide into (N_{ST i}+1) equally in Y axis
- $\sqrt{N_{ST, i}}$ units of short trip duration $\sqrt{STD_1}$, $\sqrt{STD_2}$,, $\sqrt{STD_{MST, i}}$ in each phase are decided short trip duration
- ✓ Pick the candidate short trips which duration are STD₁, STD₂,, STD_{NST};

100/(14+1) = 6.67%

Vertical Axis:

- > Then move on to
- "2.2.6. Test Cycle Development Step6 in WLTP-DHC-02-04" with no more modification.