Side Impact Child Program

Objective: To Develop a test procedure that simulates side impact crashes for the evaluation of all child restraint types

Suzanne Tylko
9th meeting of the Informal Group on Child Restraint System
March 11, 2009
Crash Simulation

1. Intrusion
2. Energy transfer
3. Load path
Occupant Protection
Q3s RESPONSES

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Chest</th>
<th>Pelvis</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIHS</td>
<td>79.1</td>
<td>61.1</td>
<td>-126.4</td>
</tr>
<tr>
<td>SUV</td>
<td>61.5</td>
<td>130.8</td>
<td>-150</td>
</tr>
</tbody>
</table>
Kinematics as a Function of Impactor

RIGID WALL

Relative velocity between pelvis & spine -1.5 m/s
Kinematics as a Function of Impactor

CHAMFERED WALL

Relative velocity between pelvis & spine +2.9 m/s
Kinematics as a Function of Impactor

SMALL CAR

<table>
<thead>
<tr>
<th>time [m/s]</th>
<th>Velocities [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-14</td>
<td>-12</td>
</tr>
<tr>
<td>-10</td>
<td>-8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Relative velocity between pelvis & spine +2.8 m/s
PELVIS
Crash Simulation Method

1. Reproducible on different sleds;
2. Interface between the child seat and door;
3. Energy transfer
4. Load path
5. Validate to car-to-car results