Considerations for A Side Impact Test Procedure for approving CRS in EU

Farid Bendjellal, Britax Childcare Group
7th GRSP Informal Group on CRS – BAST, Cologne 21 January 2009
Informal Group Objectives - Reminder

Develop definitions, performance criteria and test methods for an ISOFIX Integral “Universal” CRS

- Test bench
- Classification
- Dummies
- Dynamic tests [Including Side Impact]
- Interoperability with vehicle
Side Impact - Objectives

- Informal Group to review all existing methods to determine the one to be retained
- Informal Group to consider first methods delivering required energy level and:
 - Promoting energy absorption in the seat
 - Including measurable performance criteria
- Supported by ISO/TC22/SC12 (Alternative1)
 - To provide essential input parameters only for a CRS side impact test method.
 - Delivery date from ISO: June 2009
Field Studies & Key Findings
Analysis of CHILD Data Related to Side Impacts*

Injury Severity Struck Side & Non Struck Side
284 Restrained Children

Injury Severity Struck Side
157 Restrained children

Higher risk on struck side!

* Analysis of CHILD Data Related to Side Impacts : Philippe Lesire - Protection of Children in Cars – 7/8 December 2006 - Munich
• ¾ of injuries to the head and face (seat group 0 to 1)
• Neck in 2nd position
• Abdomen & lower limbs in 3rd position
Struck Side (Ranking)
- Head (impact on rigid part of the vehicle)
- Neck (often with brain injury)
- Chest (shell, boosters, Seat Belt)

Non Struck Side
- Head - impact on rigid part of the car
- Chest

Intrusion >300 mm
- 50% of children MAIS4+

* Analysis of CHILD Data Related to Side Impact (Philippe Lesire) - Protection of Children in Cars – 7/8 December 2006 - Munich
62 crashes investigated – Nearside, Center & Farside*

Body Regions of Injury (AIS2+, n=170)

- 70% of injuries to head and face (118/170)
- Thorax in 2nd position (13/170)
- lower limbs & Abdomen in 3rd & 4th position (13/170; 10/170)

In Depth analysis of 21 nearside cases

Involved Physical Components – Head and Face (n=34 injuries)

Key Message
- Vehicle Components 61%
- CRS Components 24%
- External Intruding Objects 9%
- Other Occupants 6%

In Depth analysis of 21 nearside cases

Involved Physical Components – Other Body Regions
- Thorax
- Abdomen & Lower Extremity (n=15 injuries)

Key Message
- CRS Components 46%
- Vehicle Components 41%
- Other Occupants 13%

In Depth Study of 8 side Impact crashes

- **Most frequently injured body areas**
 - Head, Face, Lower Extremity
 - Need for a biofidelic dummy
- **Side crashes, in addition to lateral component**
 - Include a forward component
- **Intrusion can be direct or indirect**
 - Direct: Car structure contacting the occupant (direct)
 - Indirect: Vehicle part such as front seat intruding into occupant space
- **CRS rotates towards the site of impact**

SUZANNE TYLKO, Transport Canada, Ottawa, Ontario, Canada
NICHOLAS TAMBORRA and RICHARD M. MORGAN, FHWA, NHTSA - Traffic Injury Prevention 2005
Summary Field Accident Studies

- Body Areas requiring attention
 - Head & Face
 - Lower extremity

- Test procedure
 - Dynamic (sled test) with assessment of interactions of intruding door
 - With lateral and forward components
 - With lateral rotation of the CRS (armrest contact)

- Dummy
 - With design capability and appropriate injury criteria
The Physics
Barrier to car Side Impact – EuroNCAP 50 km/h - 90° barrier test to vehicle

Y-Velocities m/s

Velocities vs. Time

Bullet Car

Target Car

P3

P1 ½
• Test energy to be based on dummy velocity change 9 to 10 m/s (Reference Iso Boundary Conditions in N818 Doc)
• EuroNCAP Side Impact can be considered as a basis for a energy definition for a test procedure for CRS
Status of existing test methods
Status of existing test methods

<table>
<thead>
<tr>
<th>Country</th>
<th>Australia</th>
<th>USA</th>
<th>ISO</th>
<th>NPACS EU</th>
<th>Stiftung Warentest ADAC EU</th>
<th>EuroNCAP EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Up</td>
<td>Sled Test</td>
<td>Sled Test</td>
<td>Sled Test</td>
<td>Sled Test</td>
<td>Sled Test BIW Astra</td>
<td>Full Scale Test</td>
</tr>
<tr>
<td>Door to occupant</td>
<td>with & wo fixed door</td>
<td>Sliding door</td>
<td>swinging door</td>
<td>swinging door</td>
<td>Fixed door</td>
<td>-----</td>
</tr>
<tr>
<td>Angle °</td>
<td>90</td>
<td>TBD</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Dummy</td>
<td>P 9m ; P3</td>
<td>Q3S + New Neck</td>
<td>Awaiting ISO SC12 WG5</td>
<td>Q Dummies & P10</td>
<td>Q Dummies & P10</td>
<td>P1 1/2 & P3</td>
</tr>
<tr>
<td>Status</td>
<td>In Use since 2004, upgrade 2009</td>
<td>Research Stage</td>
<td>Disapproved</td>
<td>in use in UK 2007</td>
<td>in use since 2002</td>
<td>EU since 1997**</td>
</tr>
</tbody>
</table>

* Body in white and deceleration pulse modified from Golf 4 to Astra
** Child assessment protection protocol introduced in 2003

- **Fixed Door approach: SV ADAC (long experience) & Australia**
- **Dynamic Intrusion approach: 3 methods**
 - 1 in use in 1 country NPACS
 - 1 in development USA, CAN
 - 1 ISO dissaproved
Side Impact Test Procedure – Timeline Constraints

Keys
- Draft to GRSP must be circulated and discussed prior sending to GRSP
- Draft Ready by September to be considered as formal document
- Allows July & August for discussion of the draft
- Text ready by June 09
Need for a pragmatic approach to deal with side impact test procedure

- 1. Real world data point at a dynamic sled test with intrusion simulation, including biofidelic dummy and appropriate injury criteria.

- 2. Real world data also point at the need to reduce vehicle intrusion and improve vehicle interior energy absorption

- 3. Today such a test method for CRS as in 1 is not available and for vehicles, test method to control direct intrusion exist worldwide (ECE95, FMVSS 214 etc...), but no provision exist for instance for door energy absorption

- 4. Let us aim at a simple, feasible and comprehensive approach involving improvements both CRS and vehicle

- 5. Let us consider head protection as a key fundamental objective to achieve

Approach proposed:
- 2 step approach to deal with the issue
A Step by step approach Proposed To the Informal Group: Phase 1 – Option

Phase 1 : Head Containment & Energy Absorption for the CRS & Vehicle interior Energy Absorption

CRS

Head Containment & Energy Absorption – Pendulum Test – Impact energy TBD from EuroNCAP Side Impact

Performance Criteria
Using Q Dummy with acceptable Head Neck Kinematics
Head Containment Y/N from video analysis (NPACS or Stiftung Warentest)
For energy absorption, Head Acceleration based criterion

Vehicle

Energy Absorption of vehicle parts using ECE21 principle on door interior and rear of the front seat

Performance Criterion
Pendulum 3ms Acceleration < XX G’s
Analogy with ECE 21 energy dissipation of vehicle interior
A Step by step approach Proposed To the Informal Group: Phase 1

Phase 1 : Head Containment & Energy Absorption for the CRS & Vehicle interior Energy Absorption

CRS

- Head Containment & Energy absorption - Sled Test – Fixed door – ADAC Generic Pulse ΔV 28 km/h, 80°

Vehicle

- Energy Absorption of vehicle parts using ECE 21 principle on door interior and rear of the front seat

Performance Criteria

- Using Q Dummy with acceptable Head Neck Kinematics
- Head Containment Y/N from video analysis (NPACS or Stiftung Warentest)
- For energy absorption, Head Acceleration based criterion

- Performance Criterion
 - Pendulum 3ms Acceleration < XX G’s
 - Analogy with ECE 21 energy dissipation of vehicle interior
Step by step approach Proposed To the Informal Group: Phase 2

Phase 2: Intrusion based sled test & Vehicle Energy Absorption & Vehicle Control of indirect intrusion

CRS
- Intruding Door Test TDB (example below only)
- Slide seat mass: 100kg
- Contact surface: 400mm x 150mm
- Impactor
- 100mm
- 300mm
- 250mm
- Aluminum honeycomb

Vehicle
- Energy Absorption of vehicle parts using ECE21 principle on door interior and rear of the front seat
- Performance Criterion
 - Pendulum 3ms Acceleration < XX G’s
 - Analogy with ECE 21 energy dissipation of vehicle interior
- Vehicle Control of indirect intrusion*
- Objective: limit the intrusion into the rear occupant space of front seat back (situation seen in side impact accidents with frontal component)
- Test Method to be defined

* Based on M. Maltese Stapp 07 Paper
Informal group to consider for discussion proposed steps for both CRS and Vehicles

Must find a compromise in terms of

» Timeline: Draft to be circulated, approved and circulated to GRSP by 2nd week of Sept
» Feasability of the procedure given available data and tools (dummies)
» Capacity of the both CRS and test procedures to address the key body injury area: Head & Face!