Proposal for corrigenda to the proposal for Amendment 1 to global technical regulation No. 4
(Worldwide harmonized Heavy Duty Certification)
(Emissions of C.I. and P.I. (NG and LPG) engines)
(ECE/TRANS/WP.29/2009/121)

The text reproduced below was prepared by the WHDC secretary in order to correct editorial errors in document ECE/TRANS/WP.29/2009/121. The modifications to the text are marked in bold characters or strikethrough. The amendments to paragraph 7.6.3. (hot soak period) and to paragraph 8.6.3. (calculation of specific emissions) reflect the proposal of the USA in document No. WP.29-149-12 for solving the options on hot soak period and cold start weighting factor in this global technical regulation.

Paragraph 3.2., amend to read:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td></td>
<td>Slope of the regression</td>
</tr>
<tr>
<td>a_0</td>
<td></td>
<td>y intercept of the regression</td>
</tr>
<tr>
<td>c_{gas}</td>
<td>ppm/\text{Vol per cent}</td>
<td>Concentration on the gaseous components</td>
</tr>
<tr>
<td>e_t, e_r</td>
<td>g/kWh</td>
<td>Specific emission during regeneration</td>
</tr>
<tr>
<td>k_s</td>
<td>-</td>
<td>Regeneration factor</td>
</tr>
<tr>
<td>$k_{r,u}$</td>
<td>-</td>
<td>Upward regeneration adjustment factor</td>
</tr>
<tr>
<td>$k_{r,d}$</td>
<td>-</td>
<td>Downward regeneration adjustment factor</td>
</tr>
<tr>
<td>$m_b, m_{b,d}$</td>
<td>mg</td>
<td>Particulate sample mass of the dilution air collected</td>
</tr>
<tr>
<td>m_f</td>
<td>mg</td>
<td>Particulate sampling filter mass</td>
</tr>
<tr>
<td>$m_p, m_{p,d}$</td>
<td>mg</td>
<td>Particulate sample mass collected</td>
</tr>
<tr>
<td>M_d</td>
<td>g/mol</td>
<td>Molar mass of the dilution air</td>
</tr>
<tr>
<td>M_f</td>
<td>Nm</td>
<td>Torque absorbed by auxiliaries/equipment to be fitted</td>
</tr>
<tr>
<td>M_r</td>
<td>Nm</td>
<td>Torque absorbed by auxiliaries/equipment to be removed</td>
</tr>
<tr>
<td>n_r</td>
<td>-</td>
<td>Number of measurements with during regeneration</td>
</tr>
<tr>
<td>P_f</td>
<td>kW</td>
<td>Power absorbed by auxiliaries/equipment to be fitted</td>
</tr>
<tr>
<td>P_r</td>
<td>kW</td>
<td>Power absorbed by auxiliaries/equipment to be removed</td>
</tr>
<tr>
<td>r^2</td>
<td>-</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>s</td>
<td></td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>

Paragraph 6.3.5., amend to read:

The calculation of reference and actual cycle work (see paragraphs 7.4.8. and 7.8.6.) shall be based upon engine power according to paragraph 6.3.1. In this case, $P_f P_a$ and $P_r P_a$ of equation 4 are zero, and P equals P_m.
If auxiliaries/equipment are installed according to paragraphs 6.3.2. and/or 6.3.3., the power absorbed by them shall be used to correct each instantaneous cycle power value $P_{m,i}$, as follows:

$$P_i = P_{m,i} - P_{f,i} + P_{r,i}$$ \hspace{1cm} (4)

where:
- $P_{m,i}$ is the measured engine power, kW
- $P_{f,i}$ is the power absorbed by auxiliaries/equipment to be fitted, kW
- $P_{r,i}$ is the power absorbed by auxiliaries/equipment to be removed, kW

Paragraph 6.6.2., amend to read:

With reference to the specific emission calculations in paragraph 8.6.3., the regeneration adjustment factors shall be applied, as follows:

- (e) for a test without regeneration, $k_{r,u}$ shall be multiplied with or be added to, respectively, the specific emission e in equations 69, 70a or 70b,
- (f) for a test with regeneration, $k_{r,d}$ shall be multiplied with or be added to be subtracted from, respectively, the specific emission e in equations 69, 70a or 70b.

Paragraph 7.3., flowchart, amend to read:

Data collection and evaluation paragraph 7.6.6./7.7.4.

Paragraph 7.4.7., amend to read:

…denormalized, using the mapping curve determined according to paragraph 7.4.3., as follows:

$$M_{ref,i} = \frac{M_{norm,i}}{100} \times M_{max,i} + M_{f,i} - M_{r,i}$$ \hspace{1cm} (10)

where:
- $M_{norm,i}$ is the normalized torque, per cent
- $M_{max,i}$ is the maximum torque from the mapping curve, Nm
- $M_{f,i}$ is the torque absorbed by auxiliaries/equipment to be fitted, Nm
- $M_{r,i}$ is the torque absorbed by auxiliaries/equipment to be removed, Nm

If auxiliaries/equipment are fitted in accordance with paragraph 6.3.1. and Annex 7, $M_f M_a$ and $M_r M_b$ are zero.

Paragraph 7.6.3., amend to read:

Immediately upon completion of the cold start test, the engine shall be conditioned for the hot start test using a 10 ± 1 minutes hot soak period, by using one of the following options:
- (a) 5 ± 1 minutes hot soak period
(b) 20 ± 1 minutes hot soak period

The option shall be selected by the Contracting Parties.

Paragraph 7.8.4., amend to read:

The following provisions apply for analyzer drift:
(a) The pre-test zero and span and post-test zero and span responses may be directly inserted into equation 66 applied to the drift calculation provisions of paragraph 8.6.1. without determining the drift;
(b) If the drift difference between the pre-test and post-test results is less than 1 per cent of full scale, the measured concentrations may be used uncorrected or may be corrected for drift according to paragraph 8.6.1.;
(c) If the drift difference between the pre-test and post-test results is equal to or greater than 1 per cent of full scale, the test shall be voided or the measured concentrations shall be corrected for drift according to paragraph 8.6.1.

Paragraph 7.8.7., amend to read:

Linear regressions of the actual values \((n_{act}, M_{act}, P_{act})\) on the reference values \((n_{ref}, M_{ref}, P_{ref})\) shall be performed for speed, torque and power for both the WHTC and the WHSC.

To minimize the biasing effect of the time lag between the actual and reference cycle values, the entire engine speed and torque actual signal sequence may be advanced or delayed in time with respect to the reference speed and torque sequence. If the actual signals are shifted, both speed and torque shall be shifted the same amount in the same direction.

The method of least squares shall be used, with the best-fit equation having the form:

\[
y = a_1 x + a_0
\]

(11)

where:
\(y\) is the actual value of speed (\(\text{min}^{-1}\)), torque (Nm), or power (kW)
\(a_1\) is the slope of the regression line
\(x\) is the reference value of speed (\(\text{min}^{-1}\)), torque (Nm), or power (kW)
\(a_0\) is the y intercept of the regression line

Paragraph 8.4.2.1., amend to read:

…

Two calculation procedures are described in paragraphs 8.4.2.3. and 8.4.2.4., which are equivalent for the reference fuels of Annex 2.

…
Paragraph 8.6.3., amend to read:

The specific emissions e_{gas} or e_{PM} (g/kWh) shall be calculated for each individual component in the following ways depending on the type of test cycle.

For the WHSC, hot WHTC, or cold WHTC, the following equation shall be applied:

$$ e = \frac{m}{W_{\text{act}}} \tag{69} $$

where:
- m is the mass emission of the component, g/test
- W_{act} is the actual cycle work as determined according to paragraph 7.8.6., kWh

For the WHTC, the final test result shall be a weighted average from cold start test and hot start test according to the following equation by using either of the following options:

$$ e = \frac{(0.14 \times m_{\text{cold}}) + (0.86 \times m_{\text{hot}})}{(0.14 \times W_{\text{act,cold}}) + (0.86 \times W_{\text{act,hot}})} \tag{70} $$

$$ e = \frac{(0.1 \times m_{\text{cold}}) + (0.9 \times m_{\text{hot}})}{(0.1 \times W_{\text{act,cold}}) + (0.9 \times W_{\text{act,hot}})} \tag{70b} $$

The option shall be selected by the Contracting Parties.

where:
- m_{cold} is the mass emission of the component on the cold start test, g/test
- m_{hot} is the mass emission of the component on the hot start test, g/test
- $W_{\text{act,cold}}$ is the actual cycle work on the cold start test, kWh
- $W_{\text{act,hot}}$ is the actual cycle work on the hot start test, kWh

If periodic regeneration in accordance with paragraph 6.6.2. applies, the regeneration adjustment factors $k_{r,u}$ or $k_{r,d}$ shall be multiplied with or be added to, respectively, the specific emissions result e as determined in equations 69 and 70.

Paragraphs 3.1.10., 3.1.20., 3.2., 7.5.6., 7.6.6., 7.7.4., 8.1.2., 8.1.3., 8.4.3.1., 8.4.3.2.2., 8.5.2.3.1., 8.5.2.3.2., 8.5.2.3.3., 8.5.3.1., 9.2., table 7, 9.3.11., 9.4.6.3., A.3.1.3., A.3.2.1., A.3.2.2., A.3.2.3., A.3.2.4., A.3.2.5., amend to read:

Replace: dilution air with diluent.