Flex GT Testing of US Vehicles

NHTSA’s Vehicle Research and Test Center (VRTC)

Ann Mallory, Transportation Research Center, Inc
Jason Stammen, National Highway Traffic Safety Administration
Flex TEG Meeting
March 2008
BASl, Cologne
Goals

• Gain experience with Flex GT
• US vehicle performance with Flex GT
• Understand the effect of changing impact height as a substitute for added body mass
Tests Performed

2002 Mazda Miata

- Center

2005 Honda CR-V

- Center
- Outboard 347 mm from center

- Each location: 25 mm / 75 mm above ground reference level
- Two additional tests performed on Miata at 75 mm for repeatability
Method

- Flex GT (SN 06)
- GTR procedure (except test height*)
 - 11.1 m/s (+/- 0.2 m/s) by laser/video
 - All points within test zone
 - Orientation: ±5° axial rotation, ±2° pitch and roll by video
 - Test height: 25 mm & 75 mm* above ground reference level
- Flex GT certification following every test
Results

• Test Experience and Repeatability
• Injury Measurements for CR-V and Miata
 – Compared to proposed injury limits
 – Compared to prior test results with TRL
 – 25 mm and 75 mm results compared
• Damage to the Flex GT
Test Experience

• Orientation (±5° axial rotation)
 – Improvement over TRL and FlexPLI
 – Roller and flat knee area help reduce spin

• Orientation (±2° pitch and roll)
 – Roll tested in speed shots
 – Pitch confirmed for each test
 (affected by deformation of launch plate)
Repeatability

3 tests: Mazda Miata, Center impact, 75 mm impact height

<table>
<thead>
<tr>
<th></th>
<th>Femur Bending Moment N-m</th>
<th>Tibia Bending Moment N-m</th>
<th>Knee ligament elongations mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A3</td>
<td>A2</td>
<td>A1</td>
</tr>
<tr>
<td>Mean</td>
<td>112</td>
<td>179</td>
<td>253</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>4.73</td>
<td>5.03</td>
<td>3.51</td>
</tr>
<tr>
<td>Coefficient of Variation</td>
<td>4.2%</td>
<td>2.8%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>
Injury Measures: CR-V and Miata
Results: Bending moments

- Femur 3
- Femur 2
- Femur 1
- Tibia 1
- Tibia 2
- Tibia 3
- Tibia 4

Bending Moment (N⋅m)

- Miata (25 mm)
- CR-V Outboard (25 mm)
- CR-V Center (25 mm)
Comparison to TRL: Fracture Measures

TRL Upper Tibia Acceleration (g)

Flex GT Bending Moment (N-m)

Upper tibia acceleration (g)

- Miata (25 mm)
- CR-V Outboard (25 mm)
- CR-V Center (25 mm)
Results: Ligament Elongation

- MCL: Miata (25 mm) > CR-V Outboard (25 mm) > CR-V Center (25 mm)
- PCL: Miata (25 mm) > CR-V Outboard (25 mm) > CR-V Center (25 mm)
- ACL: Miata (25 mm) > CR-V Outboard (25 mm) > CR-V Center (25 mm)
Comparison to TRL: Knee Bend Measures

- **Bending Angle (Degrees)**
- **Flex Ligament Elongation (mm)**

TR
- MCL

FLEX GT
- Miata (25 mm)
- CR-V Outboard (25 mm)
- CR-V Center (25 mm)
Comparison to TRL: Shear Measures

- **TRL**
 - Shear displacement (mm)
 - Miata (25 mm)
 - CR-V Outboard (25 mm)
 - CR-V Center (25 mm)

- **FLEX GT**
 - PCL
 - ACL

TRL Shear displacement (mm)

Elongation (mm)
Ligament Elongation
25mm vs. 75mm (Launch Height)
Bending moments
25 mm vs. 75 mm (Launch Height)
25 mm impact height (GTR)

Honda CR-V

Mazda Miata

75 mm impact height
Flex-GT Damage
Mechanical

- Knee Twist
- Bent Tabs
- Rubber Spacer
- Damaged Casings
- Seized Bolt/Sleeve
- Tibia Plate Damage/Rotation
Mechanical (cont.)

- Zippers need to be made more durable
 - Broken pull rings due to repeated high tension when assembling leg
- Slices and cuts were common
 - When does accumulated damage require replacement of flesh?
- Addition of threaded holes in standard location for accelerometer attachment at knee
 - Recommended for impact speed redundancy & comparison to TRL-measured tibia acceleration
Electrical

• We had 10 – 12 instances of a broken cable in our testing
• Improvements needed:
 – Better routing scheme
 – Dull sharp edges on knee structure
 – Stronger wire covers
 – Smaller bundle (can redundant gauges be coupled somehow to reduce the number of wires?)
 – Onboard DAS is a very good solution!
Summary

• Test experience and repeatability
 – Improved axial rotation with new roller support
 – Excellent repeatability

• Injury evaluation
 – Flex GT results ranked severity of impacts similarly to TRL testing but indicated higher injury severity
 – At least one Flex GT proposed injury limit exceeded for all three impact locations for 25 mm impact height
 – Effect of raising impact height to 75 mm varied

• Damage and durability
 – Several minor issues but no catastrophic damage
 – Need to test more aggressive vehicles to evaluate durability for US fleet