First Technology Safety Systems

Design Freeze Status

Flex-PLI-GTR Development
Full Calibration Test Procedures

Bernard Been
FTSS Europe
Comments addressed from Design Freeze meeting
February 20th, 2008, JARI, Tsukuba, Japan
Update March 31st, 2008
Current Status

• Flexible bone material calls for new approach and new lines of thought
• Some details presented may change
Flex-GTR Full Calibration Test Procedures (Overview)

1. **Evaluate Long Bone Cores Bending Characteristic**
 - Obtain Strain (mV) to Moment Conversion values
 - Frequency:
 - After manufacturing
 - Each year
 - [After exceeding 400Nm (~125% of IARV*)]
 - After failure of dynamic test

2. **Evaluate Assembly Bending Characteristics**
 - Check ultimate bending moment
 - Frequency:
 - After manufacturing
 - Each year
 - [After exceeding 400 Nm (~125% of IARV)]
 - After femur or tibia assembly/-parts exchange
 - After failure of dynamic test

3. **Evaluate Knee Bending Characteristics**
 - Evaluate Knee Ligament Elongation Values
 - Frequency:
 - After manufacturing
 - Each year
 - [After exceeding IARV]
 - After knee assembly/-parts exchange
 - After failure of dynamic test

4. **Evaluate consistency of the assembly**
 - Frequency:
 - Each [1-10] tests
 - After exceeding IARV
 - After knee or femur or tibia assembly/-parts exchange

IARV : Injury Assessment Reference Value
Conduct this kind of test at center position of each gages

Load transducer (type: KYOWA LU-1TE)

Quasi static
$V = 10 \text{ mm/min}$

Ram
(Surface shape: $r = 25 \text{ mm}$)

Support length: 130 mm

F_c $\frac{F}{2}$ $\frac{F}{2}$

Moment M (Nm) = $\frac{F}{2} \times 65 / 1000$
Step 1: Bone Core 7 tests
Quasi-static 3-Point Bending Test

- Quasi static test
 - Loading rate 10mm/min.
- Calibration of bone only
 - Supply of calibrated spare parts
- Measurement of test force, deflection and strain gauge voltage
- Force deflection corridor
- Accurate control of probe and support distance L_0
- Roller support to annihilate tension - compression in bone
- Compensation for support distance change δL due to bending
SAE J2570
Performance Specification Transducers

- SAE J2570 is not applicable to FLEX-PLI bone by definition
 - Max deflection < 0.254mm
- Relevant criteria
 - Hysteresis ≤ 1% of full scale capacity
 - Non-linearity ≤ 1% of full scale capacity
- These are design goals!
- May be difficult to meet due to flexible nature of the bone
- Little experience with high deflection!
Bone Calibration Analysis

<table>
<thead>
<tr>
<th>Bone Calibration Procedure</th>
<th>GTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>thickness [mm]</td>
<td>10.5</td>
</tr>
<tr>
<td>Width [mm]</td>
<td>40</td>
</tr>
<tr>
<td>Youngs modulus JARI spec F45 4500 kg/mm²</td>
<td>44145</td>
</tr>
<tr>
<td>Ultimate strength 70kg/mm² [N/mm²]</td>
<td>687</td>
</tr>
<tr>
<td>Distance support [mm]</td>
<td>130</td>
</tr>
<tr>
<td>Test load [N]</td>
<td>10000</td>
</tr>
<tr>
<td>Test load centre [N*m] (peak 350Nm)</td>
<td>325</td>
</tr>
<tr>
<td>Bone bending Radius at loading point [mm]</td>
<td>524.1</td>
</tr>
<tr>
<td>Vertical deflection [mm]</td>
<td>2.69</td>
</tr>
<tr>
<td>Horizontal bone shortening estimate triangle [mm]</td>
<td>0.19</td>
</tr>
<tr>
<td>Horizontal bone shortening estimate Circle [mm]</td>
<td>0.33</td>
</tr>
<tr>
<td>Horizontal bone shortening average Circle/triangle [mm]</td>
<td>0.26</td>
</tr>
<tr>
<td>Error due to support distance variation [%]</td>
<td>-0.00247</td>
</tr>
<tr>
<td>Error due to support distance accuracy 0.2mm [%]</td>
<td>0.15385</td>
</tr>
<tr>
<td>Error due to friction roll pin 2.0mm diam [%]</td>
<td>0.15385</td>
</tr>
<tr>
<td>Max error due to calibration load cell [%]</td>
<td>0.12000</td>
</tr>
<tr>
<td>Total error [%]</td>
<td>0.43017</td>
</tr>
<tr>
<td>Peak strain [micro strain]</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Details of Calibration Fixtures

Accurate support distance control
 - Conical indents on sides at neutral plane of bone
 - Spring loaded ball for positioning
Pivot 2mm diameter for minimum friction
 - Hardened steel pin 60HRc
Roller end supports
End fixtures

- Pivots made from hardened dowels
- Simple parts and easy replacement
- 2mm diameter pivot
- 10mm diameter with ground flat and groove
- 10mm dowels allow alignment and load distribution of 2mm dowel
 - Surface strain on 2mm dowel 290MPa, 60HRc equals 2300MPa (1MPa=1N/mm²)
 - Surface strain on 10mm dowels 25MPa
- Rubber pads to fill space and clamp
Middle loading fixtures

- Loading point with 10mm dowels
- Rubber pads to fill space and clamp
- Central threaded hole for connection to calibration load cell
- Accurate positioning to bone
Step 2: Long Bone Tibia and Femur
Quasi-static 3-Point Bending Test

Knee side of tibia bone core

Support (rotate)

205 mm

Support Length: 410 mm

$F_{c/2}$

F_{p}

D_{c}

Sectional image

• Maintain existing procedure, Without Neoprene layer Drawings of the fixtures available

FLEX-PLI-GTR Development, March 31st, 2008
Long Bone Assembly Calibration

- Load up to IRAV [300Nm] to ensure correct IARV measurement below bending stopper working point.
Step 3: Knee
Quasi-static 3-Point Bending Test

- May use single central load cell
- If loading position well controlled

FLEX-PLI-GTR Development, March 31st, 2008
Step 2: Knee
Quasi-static 3-Point Bending Test

Tentative corridor
Test results

Tentative corridor
Test results

Tentative corridor
Test results

Tentative corridor
Test results

Moment: Mc (Nm)

Elongation: MCL (mm)

Elongation: ACL (mm)

Elongation: PCL (mm)

Force: Fc (N)
Dynamic Calibration Procedure

- Calibration rig with support arm and release magnet
- Control input pulse with tibia x-acceleration
- Control parameters
 - Drop height
 - Ax tibia proximal
 - MCL, ACL, PCL (and LCL)
 - Tibia bending moments
 - No pass-fail parameter femur bending moments
 - Target corridor ±10% from average

FLEX-PLI-GTR Development, January 4, 2008
Stopper material consistency test

- Tibia acceleration may be dependent from two parameters
 - stopper material
 - tibia response
- To be able to identify problem in case of calibration failure: tibia or stopper material
- Need to have additional procedure for stopper material test
 - Control stopper material over extended time of loading/use
 - FTSS to make proposal for dynamic (drop?) test
Dynamic Calibration Development Testing

- Continue JARI FE Model study parameter variation for calibration development
- Complete test matrix (example)
 - Base line test
 - Mount at Tibia (upside down)
 - Added mass to bottom segment
 - [Free fall height increase]
 - Loading surface Flat and Curved
- Decide on final procedure parameters based on model parameter variation
- Verify procedure details with FLEX-PLI-GT
- Calibrate GTR prototypes with final procedures

Type A-2: With additional weight 5 kg

Mount pivot at tibia
Design frozen!