EEVC WG12
Rear Impact Biofidelity Evaluation Programme

Presented by David Hynd
Chairman, EEVC WG20
Introduction

- EEVC WG20 formed in 2003 to develop test procedures for rear impacts
 - Prime focus on neck injury reduction

- EEVC WG12 to recommend dummies, injury criteria and injury risk functions for WG20 test procedures
 - Based on biomechanical evidence
EEVC WG12 - Dummy Issues

WG12 will make recommendations on

- Selection of a dummy
 - With appropriate biofidelity in low-speed rear impact test conditions

- Injury criteria
 - With a biomechanical basis

- Injury risk functions
 - With a biomechanical basis
EEVC WG12 Biofidelity Evaluation

- Several dummies used in or proposed for low-speed rear impact test procedures
 - BioRID II, RID3D, Hybrid III
 - Most have been evaluated in certain test conditions, but…

 - … No consistent evaluation of the latest versions of each dummy across a range of test conditions

- WG12 have selected a range of biofidelity test conditions to
 - Evaluate the BioRID II, RID3D and Hybrid III dummies
 - BioRID II and RID3D included as purpose-designed rear impact dummies
 - Hybrid III included as proposed in rear impact GTR
Biofidelity Test Conditions

- Rear impact biofidelity requirements chosen, based on
 - The availability of the full data set
 - Quality of the test set-up and instrumentation
 - Reproducibility
 - Relevance of the test conditions, loading condition and velocity change
 - Distribution of subject anthropometry, gender and age
 - The number of tests and test subjects

- Biofidelity requirements
 - 4 based on volunteer data
 - 1 based on PMHS data
Biofidelity Test Conditions

AZT/Chalmers volunteer tests

TRL volunteer tests
Biofidelity Test Conditions

JARI volunteer tests

LAB PMHS tests

GDV/Allianz volunteer tests
Biofidelity Requirements

- Most relevant criteria prioritised
 - E.g. head angle, T1 angle, head CoG displacement…

- New target corridors developed using a standardised method
 - EEVC WG9 method
 - Mean ± 1 std dev
 - Straight line approximation for tabulation

LAB - head angle wrt T1 co-ordinate system
Biofidelity Analysis

- **Subjective analysis**
 - Performance with respect to target corridors
 - Influence of seat type and relevance to real-world seat testing

- **Objective analysis**
 - CORA analysis - goodness of fit of each dummy response to each mean PMHS or volunteer response
 - Algorithm developed by PDB
 - Score 1 if entirely within inner corridor (mean human ±1 std dev)
 - Score 0 if entirely outside outer corridor (mean ±2 std dev)
 - Linear aggregation between these limits
Biofidelity Results

- Some typical results…

LAB test results - head CoG x-axis displacement w.r.t. the sled - PMHS, no head restraint
Biofidelity Results

- Some typical results…

JARI test results - head rotation w.r.t. T1 - volunteer, no head restraint
Biofidelity Results

- Some typical results…

Chalmers/AZT test - T1 angle w.r.t. the sled
Biofidelity Results

- Some typical results…

Chalmers/AZT test - Head rotation w.r.t. the sled
Biofidelity Results

- **Biofidelity - Hybrid III**
 - Head motion w.r.t. T1 not biofidelic
 - Head rotation good in some seats, poor in others - biofidelity seat dependent
 - T1 rotation generally not biofidelic
 - Head acceleration poor
 - Seat back interaction least humanlike
 - Head restraint interaction least humanlike - contact force too low
Biofidelity Results

- **Biofidelity - RID\(^3D\)**
 - Biofidelity better at higher test severity
 - Not as able to accommodate different seat structures as BioRID and seat back interaction not as good as BioRID
 - Head restraint interaction comparable to BioRID II

- **Biofidelity - BioRID II**
 - Best overall biofidelity, although z displacements not good (nor for Hybrid III nor RID\(^3D\))
 - Head restraint interaction comparable to RID\(^3D\)
 - Seat back interaction most humanlike
Biofidelity Results

- **Objective CORA analysis**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RID<sup>3D</sup></th>
<th>Hybrid III</th>
<th>BioRID II</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 angle w.r.t. the sled</td>
<td>0.55</td>
<td>0.38</td>
<td>0.77</td>
</tr>
<tr>
<td>T1 x-axis displacement</td>
<td>0.53</td>
<td>0.50</td>
<td>0.47</td>
</tr>
<tr>
<td>T1 x-axis acceleration</td>
<td>0.56</td>
<td>0.48</td>
<td>0.60</td>
</tr>
<tr>
<td>Head rotation w.r.t. T1</td>
<td>0.45</td>
<td>0.28</td>
<td>0.59</td>
</tr>
<tr>
<td>Head C of G x-axis displacement w.r.t. T1</td>
<td>0.49</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>Head rotation w.r.t. the sled</td>
<td>0.49</td>
<td>0.29</td>
<td>0.62</td>
</tr>
<tr>
<td>Head C of G x-axis displacement w.r.t. the sled</td>
<td>0.62</td>
<td>0.43</td>
<td>0.46</td>
</tr>
<tr>
<td>Overall</td>
<td>0.53</td>
<td>0.41</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Biofidelity Results

- **Objective CORA analysis**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RID^{3D}</th>
<th>Hybrid III</th>
<th>BioRID II</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 angle w.r.t. the sled</td>
<td>0.55</td>
<td>0.38</td>
<td>0.77</td>
</tr>
<tr>
<td>T1 x-axis displacement</td>
<td>0.53</td>
<td>0.50</td>
<td>0.47</td>
</tr>
<tr>
<td>T1 x-axis acceleration</td>
<td>0.56</td>
<td>0.48</td>
<td>0.60</td>
</tr>
<tr>
<td>Head rotation w.r.t. T1</td>
<td>0.45</td>
<td>0.28</td>
<td>0.59</td>
</tr>
<tr>
<td>Head C of G x-axis displacement w.r.t. T1</td>
<td>0.49</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>Head rotation w.r.t. the sled</td>
<td>0.49</td>
<td>0.29</td>
<td>0.62</td>
</tr>
<tr>
<td>Head C of G x-axis displacement w.r.t. the sled</td>
<td>0.62</td>
<td>0.43</td>
<td>0.46</td>
</tr>
<tr>
<td>Overall</td>
<td>0.53</td>
<td>0.41</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Biofidelity Results

- **Objective CORA analysis**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RID<sup>3D</sup></th>
<th>Hybrid III</th>
<th>BioRID II</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 angle w.r.t. the sled</td>
<td>0.55</td>
<td>0.38</td>
<td>0.77</td>
</tr>
<tr>
<td>T1 x-axis displacement</td>
<td>0.53</td>
<td>0.50</td>
<td>0.47</td>
</tr>
<tr>
<td>T1 x-axis acceleration</td>
<td>0.56</td>
<td>0.48</td>
<td>0.60</td>
</tr>
<tr>
<td>Head rotation w.r.t. T1</td>
<td>0.45</td>
<td>0.28</td>
<td>0.59</td>
</tr>
<tr>
<td>Head C of G x-axis displacement w.r.t. T1</td>
<td>0.49</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>Head rotation w.r.t. the sled</td>
<td>0.49</td>
<td>0.29</td>
<td>0.62</td>
</tr>
<tr>
<td>Head C of G x-axis displacement w.r.t. the sled</td>
<td>0.62</td>
<td>0.43</td>
<td>0.46</td>
</tr>
<tr>
<td>Overall</td>
<td>0.53</td>
<td>0.41</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Conclusions

- Hybrid III, RID3D and BioRID II successfully evaluated in five biofidelity test conditions
- Hybrid III had insufficient biofidelity to be considered further as a test tool for low-speed rear impact
- For many parameters, RID3D and BioRID II were similarly biofidelic wrt target corridors
 - Subjectively, BioRID slightly better
 - Objectively (CORA analysis) BioRID scored higher (0.59) than RID3D (0.53) - average of seven parameters from five test conditions
- BioRID showed better seat back and head restraint interaction
Conclusions

- Overall, recommend that based on the currently available biofidelity data, BioRID II is the most suitable dummy for use in a low-speed rear impact test procedure
 - Scope for improvement of T1 vertical motion

- Repeatability and reproducibility evaluation underway
 - Testing complete
 - Analysis available soon
End of Presentation

Presented by David Hynd
Chairman, EEVC WG20

www.eevc.org