

Status of Research Work of EEVC WG 15 "Compatibility Between Cars"

Eberhard Faerber on behalf of EEVC WG 15

38th WP.29/GRSP Geneva, 06 - 09 December 2005

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 1 of 45

The <u>Terms of Reference of EEVC WG 15</u>

are to develop a test procedure to assess car frontal impact compatibility and establish criteria to rate frontal impact compatibility. The Working Group will report its findings and will propose a test procedure in November 2006.

The full version of the terms of reference can be found on the Web-site of EEVC WG 15

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 2 of 45

Membership

Actual membership of EEVC WG 15:

Member	Industry advisor
Eberhard Faerber, BAST (chairman) Tiphaine Martin, UTAC (secretary) Pascal Delannoy/UTAC (substitute)	Dr. Robert Zobel/VW Richard Zeituni/PSA Peugeot Citroen
Giancarlo Della Valle/Elasis Jaoquim Huguet/IDIADA Cor van der Zweep/TNO	Federico Pasqui/Fiat
Dr. Mervin Edwards/TRL Robert Thomson/Chalmers University	Martin Harvey/Jaguar Anders Kling/Volvo

<u>Observer</u>

None (invited David L. Smith/NHTSA)

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 3 of 45

Workplan

Current Main topic at the moment:

Give advice to and guide the VC COMPAT project commenced in March 2003 for a period of 3,5 years. The project is funded by the EU-Commission.

Objective of the VC COMPAT Project:

To draft legal test procedures to assess

- car to car crash compatibility
- (EEVC WG 14: car to truck Compatibility)

WP 1: Structure	Analysis - UTAC
Car Fleet - UTAC	Truck Fleet - CIC

 WP 2: Accident Analysis & Cost-Benefit Analysis - BASt

 Car to Car Impact - BASt
 Car toTruck Impact - GDV

<u>VC COMPAT</u> <u>Workplan</u>

WP 3: Crash Testing & Analysis - TRL

WP 4: Car to Car & Car to Barrier Crash Modelling - TNO

WP 5: Synthesis of Test Procedure for Car to Car Impact - TRL

WP 10: Industrial Liaison and Dissemination - TNO					
Car to Car Impact - ChUT	Car toTruck Impact - TNO				

WP 11: Project Management -TRL				
Car to Car Impact - TRL	Car toTruck Impact - TNO			

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 5 of 45

Workplan

Status December 2005:

- WP 1: Structure analysis (UTAC) completed
- WP 2: Accident Analysis, Cost Benefit Analysis (BASt, TRL)
 - Accident Analysis, Benefit Analysis (TRL, BASt) completed
 - Cost Analysis (Fiat) to be done
- WP 3: Crash Testing Test Programme (BAST, Fiat, TRL, UTAC) completed
- WP 4: Fleet Modelling (TNO) drafted
- WP 5: Synthesis (TRL, all) to be done 01/2006 to 09/2006

OBJECTIVES:

- The objective of WP1 is to measure and create a database containing dimensions of the main car and truck/trailer structures that are involved in front and side collisions
- ⇒ This database will be used to study current car-to-car and car-to-truck geometric incompatibility.

CAR SELECTION:

	A segment			B segment			C segment			D segment			D/E segment	
n°	name	%	n°	name	%	n°	name	%	n°	name	%	n°	name	%
1	Citroën C2	0,21	6	Citroën C3	1.85	15	PT Cruiser	0.13	25	Saturn Ion	0	34	Mercedes Eclass	1.18
2	Renault Twingo	0.7	7	Opel Corsa	2.6	16	Ford Focus	2.83	26	Ford Mondeo	1.22	35	Renault Velsatis	0.08
3	Smart	0.07	8	Renault Clio	3.11	17	Opel Astra	2.16	27	Mazda 6	0.57	36	Volvo S80	0.09
4	Toyota Yaris	1.32	9	VW Polo	2.12	18	Peugeot 307	2.81	28	Opel Vectra	1.08			
5	Citroën Saxo	0.44	10	Peugeot 206	3.53	19	Renault Megane	1.86	29	Renault Laguna	1.13			
			11	Fiat Punto	2.32	20	Audi A3	0.81	30	Rover 75	0.24			
			12	Ford Fiesta	2.5	21	BMW 3 series	1.99	31	VW Passat	1.62			
			13	Seat Ibiza	1.14	22	VW Golf	3.61	32	Audi A4	1.61			
			14	Mercedes Aclass	0.9	23	Mercedes Cclass	1.36	33	Citroën C5	0.62			
						24	Fiat Stilo	0.96						
	F segment	•		Small MPV			MPV	L		4WD			LCV	
n°	name	%	n°	name	%	n°	name	%	n°	name	%	n°	name	%
37	BMW 7series	0.09	40	Opel Meriva	0.67	46	Citroën C8	0.16	49	Honda CRV	0.19	54	Renault Trafic	0.32
38	Mercedes S class	0.11	41	Citroën Picasso	1.94	47	Renault Espace	0.39	50	Nissan Xtrail	0.28	55	Ford Transit	0.84
39	VW Phaeton	0.02	42	Opel Zafira	1.38	48	VW Sharan	0.27	51	Freelander	0.27			
			43	Renault Scenic	1.86				52	Volvo XC90	0.11			
			44	VW Touran	0.0004				53	Range Rover	0.08			
			45	Renault Kangoo	1.05									

⇒ 55 vehicles measured: representative of 61% of European sales in 2003

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 8 of 45

SYNTHESIS:

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 9 of 45

CONCLUSIONS:

- The purpose of this WP1 is to give information about the main car structures that are involved in front and side collisions
- (Structure Data were used to select car models to be tested)
- 55 vehicles were measured in this survey
- Data representative from 61% of the European sales in 2003
- The investigation area of frontal structure interaction may be positioned at 180 mm from the ground to 650 mm.

Benefit Analysis to be carried out by TRL and BASt

<u>Database</u>

• UK: CCIS

UK in-depth Co-operative Crash Injury Study detailed and accurate information, including AIS codes crashes from June 1998 – present

• UK: STATS19

UK national accident database includes all injury accidents that are reported by or to the police broad in scope, limited detail

• Germany: GIDAS

German in Depth Accident Study representative for Germany

 Germany: German national traffic accident data similar to UK data

Databases for UK and Germany are different:

UK:

- tow away accidents
- more severe accidents
- mostly retrospective analysis

Germany:

- analysis on the spot
- representative for Germany

Consequences:

- UK data contains more severe accidents
- German data contains only few very severe accidents
- → different approaches

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 12 of 45

• Definition

Target Population for GB

- Casualties likely to experience reduced risk of injury as a result of improved compatibility
- Methodology
 - Select accidents where improved compatibility likely to help injury outcome

Selection Criterion	Lower Estimate	Upper Estimate
Impact location	frontal	frontal
Seat belt usage	only belted occupants	only belted occupants
Occupant position	only frontal occupants	only frontal ocupants
Overlap	> 30 %	> 20 %
PDOF	111 o'clock	102 o'clock
ETS	all accidents up to 48 km/h	all accidents up to 56 km/h

- Count front seat occupant casualties

- Target population estimate
 - -20% (343) to 31% (543) fatally injured car occupants
 - 41% (8,130) and 52% (10,504) seriously injured car occupants

Benefit Methodology - assumptions for GB

Aim of compatibility

- Predictable performance to absorb impact energy in frontal structure
- Little compartment intrusion
- Optimum deceleration pulse
- <u>Assumptions</u>
- Pessimistic (lower)
 - Eliminate injuries caused by contact with an <u>intruding</u> front interior structure if ETS < 56 km/h
- Optimistic (upper)
 - Eliminate injuries caused by <u>contact</u> with the front interior (with or without intrusion) if ETS < 56 km/h

Results - Estimated Proportional Benefit for GB

- Pessimistic (lower)
 - Save 12% of fatalities & 9% of seriously injured casualties
- Optimistic (upper)
 - Save 25% of fatalities & 18% of seriously injured casualties

Results – Estimated Benefit for GB

- STATS19 (1999 2003) adjust to remove cars registered before 1996
 - Occupants in frontal impacts seated in front of car
 - 898 killed on average per year
 - 10,056 seriously injured on average per year
- Pessimistic Estimate (Preventing Intrusion Injuries)
 - Save 108 fatalities per year
 - Save 905 serious casualties per year
- Optimistic Estimate (Preventing Contact Injuries)
 - Save 225 fatalities per year
 - Save 1,810 serious casualties per year

Full paper: medwards@trl.co.uk

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 17 of 45

STEP 1: Estimation of Target Population

Target Population

Compatibility can address 84% of all fatal and 85% of all serious accidents

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 18 of 45

STEP 1: Estimation of Target Population

	Car to Car Category	Car to Truck Category	Single Car Category	Total
Proportion of fatal Occ.	24%	15%	45%	84%
Proportion of serious Occ.	40%	8%	37%	85%
Share of frontal impacts	60%	58%	51%	
Compatibility Relevant				
Accidents	68%	50%	20%	
TARGET P. Fatalities	9%	4%	5%	18%
Serious Inj.	16%	2%	4%	22%

Target Population = "Proportion" x "Share of frontal impacts" x "Relevant Accidents"

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 19 of 45

STEP 2: Injury Risk Curves (Binary Data)

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 20 of 45

STEP 2: Compatibility effect on injury risk

ECE R.94, Euro NCAP:

Assumption: Offset block fully compatible Vehicle: 1500kg, $\Delta v = 64$ km/h, 5 stars $E_{kin} = 240$ kJ, $E_{def. Elem.} = 35$ kJ, $E_{Vehicle R94} = 205$ kJ

Car to Car Impact:

Assumption: Start of compartment collapse at 50 -56km/h Vehicle = 1500kg, ∆v = 53km/h, E_{Vehicle c2c} = 160kJ

Cars can absorb more energy showing similar deformation depth

- ΔE = 45kJ or
- ΔE/E = 28% higher energy-absorption!

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 21 of 45

STEP 2: Injury Risk Estimation

Old and New Risk Curves for Frontal Passengers

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 22 of 45

Ini. Risk

nalvsis

STEP 3: BENEFIT Estimation

Proportion of	Proportion of Old Risk Curve		CHANGE
Fatalities	0,81%	0,45%	45%
Seriously Inj.	13,77%	11,21%	19%
Slightly Inj.	43,40%	43,81%	-1%
Uninjured	42,00%	44,52%	-6%

		Car to Car Category	Car to Truck Category	Single Car Category	Total
Target P.	Fatal Occ.	9%	4%	5%	18%
	Serious Occ.	16%	2%	4%	22%
CHANGE	Fatal Occ.	45%	45%	45%	
CHANGE	Serious Occ.	19%	19%	19%	
BENEFIT	Fatal Occ.	4%	2%	2%	8%
	Serious Occ.	3%	0,5%	0,7%	4,2%

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 23 of 45

Conclusion ...

- 8 % of all fatal car occupants will take advantage of compatible frontal car structures
- 4.2 % of all seriously injured car occupants will benefit from compatible frontal car structures
- Socio-Economic saves of 500 M€ per anno can be expected.

(full paper: pastor@bast.de or faerber@bast.de)

Two favourite test procedure candidates:

- Full Width Test with high resolution load cell wall
- Offset Deformable Barrier Test with progressive deformable barrier and load cell wall

other considered test procedures:

- ODB with standard deformable barrier
- Overload test
- Offset mobile deformable barrier (OMDB)

Full Width Barrier With Deformable Element and Load Cell Wall

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 26 of 45

Full Width Test With Deformable Element

Pre and post test front view, Resultant barrier deformation

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 27 of 45

Full Width Test With Deformable Element

Maximum Force Distribution Behind Deformable Element

150mm 0.34MPa & 150mm 1.71MPa

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 28 of 45

Full Width Barrier Evaluation

HOMOGENITY ASSESSMENT

Cell homogeneity

- Overall force distribution
- Row homogeneity
 - Vertical force distribution
- Column homogeneity
 - Horizontal force distribution

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 29 of 45

Full Width Barrier Evaluation

CELL HOMOGENEITY

$$V_{c} = \frac{\sum_{i=1}^{n_{c}} (L - f_{i})^{2}}{n_{c}}$$

V_c = Cell homogeneity assessment

- L = Target load level
- f = Peak cell force
- n_c = Number of cells in the smoothed footprint

Indicates the overall force distribution

Under Revision

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 30 of 45

PDB Approach

(Progressive Deformable Barrier)

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 31 of 45

PDB TEST PROCEDURE : CONFIGURATION

French proposal: update current R94 Frontal ODB test

3 parameters are changed:

- OBSTACLE : PDB Barrier
 - > To avoid bottoming out, more stable
- SPEED: 60 km/h
 - ➤ to check compartment strength
- OVERLAP: 50%
 - > To check half width and be close to car to car test

⇒ More realistic test configuration

EEVC WG 15, Compatibility Between Cars

PDB TEST PROCEDURE : PDB BARRIER

⇒ PDB looks like a car

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 33 of 45

PDB TEST PROCEDURE: TOOLS AND MEASUREMENT

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 34 of 45

PDB TEST PROCEDURE: CONCLUSIONS

Proposal:

Replace the current barrier by PDB one to update R94 test protocol

Influence on vehicle design

- Harmonize severity for all mass range
- improve self protection of light cars
- limit increasing stiffness of heavy cars
- improve partner protection of heavy cars

PDB Barrier is closer to new safety requirements and car design.

PDB and R.94 Barrier, Force-Deflection & Energy Absorption Capability

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 36 of 45

Crash Test Programme Phase 1 and 2

PDB Tests	FWDB Tests	Car to Car Tests
Volvo XC90	Volvo XC90	Focus vs Focus
Honda CRV	Honda CRV	Focus vs Astra
Mercedes E-Class	Mercedes E-Class	
	MMC Smart	
	Ford Focus (raised LCW)	
Golf V	Golf V	Golf V vs Golf V (60mm ride height diff.)
Astra MY 04	Astra MY 04	Astra vs Astra (60 mm ride height diff.)
Focus		

st

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 37 of 45

Crash Test Programme Phase 3 and 4

Car 1	Car 2 / Barrier	Comment	Purpose	Test Lab						
To date: 6 PD	To date: 6 PDB, 7 FWDB, 4 CtC (21 of 43 units)									
Astra '04MY	64km/h ODB		Frontal force level measurement, compartment intrusion measurements	BASt						
Astra '04MY	Golf MkV	Golf bumper crossbeam must be lower than Astra Requires similar frontal force level. Closing speed 112 km/h	Demonstrate improved structural interaction of Golf due to Astra subframe load path. (Golf cf lowered Golf)	TRL						
Investigate im	pacts with mass ratio	difference (less than 2.0)								
Panda	Panda	Raised / lowered to give 60 mm ride height difference Closing Speed 112 km/h	To establish structural interaction performance of Panda and compartment strength	Fiat						
Decision Point	t 1 (16 crash test units	remaining)								
Panda	Golf MkV	Closing Speed 112 km/h	To investigate if performance	BASt						
Panda	Astra '04MY	Closing Speed 112 km/h	of small car is improved against car with two load path levels (Panda 850 / A 1240(1.46) G 1200 (1.41))	UTAC						
Panda	FWDB	Test speed 56 km/h		TRL						
Panda	PDB	Test speed 60 km/h		UTAC						
VW Touareg	Golf	Closing Speed 112 km/h		BASt						
VW Touareg	Astra	Closing Speed 112 km/h		TRL						

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 38 of 45

Further Progress:

Both favourite test Procedures are under critical consideration and further development:

- November 2005 :
 - Collating crash test data
 - Summary of crash test results
- January 2006:
 - Finalising summary of crash test results
 - EEVC WG 15 establish conclusions
 - Commence of drafting the test procedure/ set of test procedures.

Conclusions:

Both favourite test Procedures are under critical consideration and further development:

- PDB:
 - deformation assessment
 - assessment criteria
- Full Width:
 - deformable element stiffness
 - homogeneity criteria
 - definition of area to be assessed

Possible Sets of Legal Frontal Impact tests to Assess Compatibility

Set 1:

- PDB Test Procedure replacing ECE R.94 (structure test) with barrier deformation analysis
- Maintain or/and improve restraint system tests

Set 2:

- Maintain ECE R. 94 (structure test)
- Full Width Barrier Test With Deformable Front Face (restraint test, additional airbag sensing).

Set 3:

- PDB Test Procedure replacing ECE R.94 (structure test)
- Full Width Barrier Test with or without Deformable Front Face

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 41 of 45

Horizontal Geometrics

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 42 of 45

Vertical Alignment

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 43 of 45

Illustration of Compatibility Problem

Photo Astra

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 44 of 45

Illustration of Compatibility Problem

Photo Touareg

EEVC WG 15, Compatibility Between Cars

38th GRSP, Dec. 06 - 09, 2005 Slide Nr. 45 of 45