REQUEST TO LIST IN THE COMPENDIUM OF CANDIDATE
GLOBAL TECHNICAL REGULATIONS (COMPENDIUM OF CANDIDATES)
THE UNITED STATES OF AMERICA FEDERAL MOTOR VEHICLE SAFETY
STANDARD (FMVSS) No. 202 – HEAD RESTRAINTS

Transmitted by the representative of the United States of America

Note: The document reproduced below is submitted by the United States of America to the Executive Committee (AC.3) for consideration. It contains a request to include in the Compendium of Candidates the FMVSS No. 202 on head restraints. The document is based on informal document No. WP.29-135-17 (TRANS/WP.29/1039, para. 101). This request shall be complemented with a copy of the regulation mentioned (see Article 5, paras. 5.2.1., 5.2.1.1. and 5.2.2. of the 1998 Agreement).

This document is a working document circulated for discussion and comments. The use of this document for other purposes is the entire responsibility of the user. Documents are also available via the INTERNET:

UNITED STATES OF AMERICA REQUEST TO LIST REGULATIONS IN THE COMPLENDIUM OF CANDIDATES
HEAD RESTRAINTS

Background

There are an estimated 272,088 whiplash injuries per year occurring in police-reported and unreported rear impact crashes. Many of these rear impact crashes are at low speeds. It is the consensus of the biomedical community that, at least on a macroscopic level, whiplash injuries due to rear impact crashes occur as a result of the movement of the head and neck relative to the torso. Minimum height requirements are based on the premise that in the case of no head restraint, both the bending moment on the neck and the head rotational angle is maximized, resulting in cervical hyperextension (movement beyond the normal range of motion).

When FMVSS No. 202, "Head Restraints," was first promulgated in 1969, it was believed that a head restraint height of 700 mm was sufficient to prevent neck hyperextension for most occupants and, therefore, mitigate whiplash injuries. However, current research indicates that whiplash may occur as a result of head and neck movement insufficient to cause hyperextension. Height requirements beyond the current levels are intended to prevent whiplash injuries by further limiting the movement of the head and neck. It is also widely believed that reducing the gap between the occupant’s head and the head restraint should reduce the movement of the head relative to the torso, and thus result in lower whiplash rates.

Description of Regulation

In December 2005, FMVSS No. 202 was upgraded. It now requires front seat head restraints in passenger cars, pickups, vans, and utility vehicles to be capable of achieving a height where the top of the head restraint is at least 800 mm above the H-point (which represents the normally seated 50th male hip point). The regulation has a lower limit on height; head restraints in all front outboard seats may not be less than 750 mm from the H-point. The regulation does not require rear outboard head restraints, but specifies that if head restraints are installed they must be at least 750 mm. It also requires in front seats only that the distance between the back of the head form representing the position of a 50th percentile head, in a normally seated position, and the head restraint (defined as backset) be no farther than 55 mm in any adjustment position. See Table 1 for a summary of requirements.

The upgraded regulation harmonizes many parts, but not all of FMVSS No. 202 with the Economic Commission for Europe Regulation No. 17 – Uniform Provisions Concerning The Approval Of Vehicles With Regard To The Seats, Their Anchorages And Head Restraints (Head Rests). The width and gap measurements in FMVSS 202 for adjustable restraints differ from those found in Regulation No. 17. Further, there are additional requirements for backset and adjustment retention locks for front outboard seating positions. The upgraded regulation also contains an optimal dynamic test not found in Regulation No. 17.
Benefits

In the United States of America the annual number of whiplash injuries was estimated to be approximately 272,464. 251,035 of these injuries involve occupants of front outboard seats, 21,429 injuries involve occupants of rear outboard seats. The average economic cost of each whiplash injury resulting from a rear impact collision is US$9,994 1/, which includes US$6,843 in economic costs and US$3,151 in quality of life impacts. The total annual cost of rear impact whiplash injuries is approximately US$2.7 billion.

Based on a study conducted by Kahane in 1982, the agency estimates that current integral head restraints are 17 per cent effective in reducing whiplash injury in rear impact crashes for adult occupants, while current adjustable head restraints are 10 percent effective in reducing whiplash injury in rear impact crashes for adult occupants.2/ The overall effectiveness of current head restraints for passenger cars is estimated to be 13.1 per cent.

In the Federal Regulatory Impact Analysis, it was estimated that upgrading the head restraint requirements would yield the following benefits:

(a) For front seats, reducing the backset to 55 mm increases the head restraint effectiveness by 5.83 percent, resulting in 15,272 fewer whiplash injuries for front seat occupants each year.
(b) For rear seats, increasing the height of voluntarily installed rear head restraints increases the effectiveness of these head restraints by 17.45 per cent, resulting in 1,559 fewer whiplash injuries for rear seat occupants each year.3/
(c) The total annual reduction in rear impact whiplash injuries is thus estimated at (15,272 + 1,559) 16,831 or 6 per cent of the annual number of whiplash injuries (272,464).

In sum, it was estimated that this rulemaking upgrade would further reduce the incidence of whiplash by an additional ≈6 per cent (272,464 *0.0618 = 16,831). It is noted that, with respect to whiplash injuries, a 6 per cent reduction in the incidence of whiplash is a significant step forward because the current head restraints only prevent 13.1 percent of whiplash injuries occurring in rear impact crashes.

Costs

An analysis was conducted on the US fleet to determine that costs to the manufacturer to implement the upgraded regulation. This analysis can be found in detail in Federal Regulatory Impact Analysis.

1/ The cost is estimated in 2002 US dollars.
3/ In computing benefits, estimates are based on the effectiveness of either increased height or reduced backset, but not both. The agency could not combine effectiveness of increased height and reduced backset because this, in some instances, would result in ‘‘double-counted’’ benefits. Since determining combined effectiveness is not possible, the agency notes that these estimates may underestimate the true effectiveness.
Average costs per vehicle are estimated to be:
US$4.51 in front seats
US$1.13 in rear seats for vehicles with rear head restraints
US$5.42 per average vehicle

Total cost per year is estimated to be US$84.2 million (US$70.1 million for the front seat and US$14.1 million for the rear seat).

Cost Effectiveness

The costs and benefits data was combined to estimate injuries prevented due to changes made to head restraint system to meet the upgraded requirements per dollar spent on implementing the changes to the vehicles.

The cost per equivalent life saved is estimated to be:
US$2.39 million in front seats
US$4.71 million in rear seats
US$2.61 million total

Technical documentation supporting this regulation, including documentation concerning best available technology, relative benefits, and cost effectiveness can be found in the following documents:

- Final Regulatory Impact Analysis: FMVSS No. 202 Head Restraints for Passenger Vehicles
- Federal Motor Vehicle Safety Standards; Head Restraints; Final Rule
Table 1

<table>
<thead>
<tr>
<th>Head Restraint Component</th>
<th>US FMVSS 202</th>
</tr>
</thead>
</table>

A. Application

1. **Vehicles**
 - Front outboard and rear outboard (optional) seating positions in passenger cars, MPVs and trucks with a GVWR \(\leq 4,536 \) kg, with added exclusion for seating position adjacent to aisle on buses (more than 10 seats)

2. **Requirements**
 1. **Front outboard**
 a. **Height**
 - A. **Fixed**
 - Increased to 800 mm above H-point and measured with a SAE J826 manikin. Seat back angle set at 25 degrees. Seat cushion at highest position.
 - B. **Adjustable**
 - Must achieve a height of 800 mm and cannot be adjusted below 750 mm. Measured with a SAE J826 manikin. Seat back angle set at 25 degrees. Seat cushion in highest position.
 2. **Rear outboard**
 - Rear head restraint means a rear seat back, or any independently adjustable seat component attached to or adjacent to a seat back, that has a height equal or greater than 700 mm, in any position of backset and height adjustment.
 - A. **Fixed**
 - If provided, minimum height of 750 mm above H-point. Measured with SAE J826 Manikin.
 - B. **Adjustable**
 - If provided, no adjustment below 750 mm from H-point. Measured with SAE J826 Manikin.
 3. **Rear Center**
 - Not specified

b. **Backset**

1. **Front outboard positions**
 - Backset limited to a maximum 55 mm as measured with HRMD. Head restraint (HR) in at any height adjustment between 750 and 800 mm, inclusive. Seat back angle set at 25 degrees. Seat cushion at highest position.

c. **Width**

1. **Front outboard**
 - Minimum of 170 mm on single seats (outboard seats with no seat in between) and 254 mm on bench seats (outboard seats with seat in between).
2. **Rear outboard**
 - If provided, minimum of 170 mm for all seat types

d. **Height of adjustable head restraint front surface**

 - Not specified

e. **Gaps**

1. **All outboard positions**
 - In all positions, gap between HR and seat back and within the HR is \(\leq 60 \) mm. A 165 mm sphere is pressed against the gap with a load no more than 5 N

f. **HR Adjustment Retention Devices (locks)**

1. **Height**
 - Must maintain height in highest position and at 800 mm and 750 mm for front and rear seats (if HR provided), respectively, while a downward force is applied. Seat back is rigidly constrained.
2. **Backset**
 - Under applied rearward moment, while adjusted to 800 mm for front and 750 mm for rear (if provided), HR must maintain any position of backset adjustment. Seat back is rigidly constrained.
Table 1 (continued)

<table>
<thead>
<tr>
<th>Head Restraint Component</th>
<th>US FMVSS 202</th>
</tr>
</thead>
<tbody>
<tr>
<td>g. Removability</td>
<td></td>
</tr>
<tr>
<td>1. Front</td>
<td>Can be removed with deliberate action distinct from any act necessary for adjustment.</td>
</tr>
<tr>
<td>2. Rear</td>
<td>Can be removed with deliberate action distinct from any act necessary for adjustment.</td>
</tr>
<tr>
<td>h. Clearance</td>
<td>25 mm clear space allowed where rear HRs, when seat is occupied, interfere with roofline or rear window.</td>
</tr>
<tr>
<td>i. Non-use positions</td>
<td></td>
</tr>
<tr>
<td>1. Front</td>
<td>Not allowed</td>
</tr>
<tr>
<td>2. Rear</td>
<td>Allowed, provided HR automatically returns to proper position when seat is occupied or the HR is rotated a minimum of 60° forward or rearward.</td>
</tr>
<tr>
<td>j. Radius of Curvature</td>
<td>Not specified</td>
</tr>
<tr>
<td>k. Energy Absorption</td>
<td>Front of HR impacted with head form at $v=24.1$ km/h. 3ms deceleration of head form must not exceed 80gs. Impactor is linear head form with mass of 6.8 kg.</td>
</tr>
<tr>
<td>l. Displacement Test Procedures</td>
<td>Seat back and HR loaded together. Moment of 373 Nm applied, displacement cannot exceed 102 mm same. Load increased to 890 N, seat back cannot fail. Use spherical form to apply load</td>
</tr>
<tr>
<td>m. Dynamic sled test (optional)</td>
<td>Corridor based on scaled version FMVSS 208 sled test. Target pulse falls in a corridor defined by 2½ sine waves with amplitudes of 78 m/s² and 86 m/s². 50th male dummy used in any seat, HR adjusted midway between lowest and highest position and any backset position. 12° max rotation.</td>
</tr>
</tbody>
</table>