CHILD OCCUPANT SAFETY

European Enhanced Vehicle-Safety Committee

WORKING GROUP 18

Jean-Yves LE COZ
Chairman
• In 1998: 2 children killed each day as car passenger on European roads

• From 1995 to 1999, number of children killed or injured is decreasing, situations contrasted according to countries.
Overview of existing databases

- European database - IRTAD
 - Global comparison between 29 countries or regions
 - No in-depth analysis

- National databases
 - Germany, France, United Kingdom, Sweden, Italy, Spain
 - No compatibility

Results:

- International databases are not sufficiently focussed on child safety to have a clear & detailed view of the situation.
- Harmonization of accidentological data in EU to have a significant base statistically usable, credible and representative
Overview of existing databases

- Specific databases
 - Mainly dealing for research
 - **CREST/CHILD**: 628 restrained children
 Not representative of real world but focussed on severe crashes.
 Very detailed for
 - restraint systems,
 - crash severity and configuration,
 - injury description
 Only frontal and side impacts.
 - **CCIS**: 425 children
 Not representative of real world but usefull for finding injuries.
 Type of restraint not always known
 Complete medical reports available.
 - **GIDAS**: 168 children
 Most of the cases with severe injuries (AIS 2 +) are in the CREST database or to be input in the CHILD database.
Overview of existing databases

- Specific databases
 - Mainly dealing for research

 - **LAB gn96**: 1327 children
 Representative of car to car and car to obstacle crashes countryside crashes in France.
 Very detailed for
 - restraint systems,
 - crash severity and configuration,
 - injury description.
 Data on frontal, side, rear impacts and roll overs.

 - **Questionnaire**: 230 children
 Not representative and injury level is defined by parents,
 Over-representativity of rear impacts.

 - **GDV**: more than 350 children
 Most of the cases with severe injuries (AIS 2 +) are in the CRESTdb or
 to be input in the CHILD database.
• Restrained children are better protected than unrestrained, especially when using an appropriate CRS.

• The risk of severe injuries is small for properly restrained children up to a deltaV of 40 km/h in frontal impacts.

• Swedish experience shows good results with rearward facing systems for children up to 3 years of age.

• Existing CRS have been mainly designed for protection in frontal impact.

• CRS protection in side impacts is not sufficient.

• Determination of major injury mechanisms / type of CRS is possible for different type of impacts.
EEVC WG 18 points out items

- **for frontal impacts**:
 Test bench (geometrical + properties)
 Severity of test (shape of pulse)
 Biofidelity and instrumentation of dummies,
 Criteria based on body segments on which injuries occur.

- **for side impacts**:
 Introduction of side requirements,
 Biofidelity, instrumentation of dummies and associated criteria
Background and development of dummies...

P-serie dummies are in R44 today:
- Familly is complete
- They were adapted for evaluation of protection in frontal impact.
- Probably not the optimal dummies for all impact directions.
- Some criteria used are not relevant anymore.

Q-serie dummies:
- Familly is not complete:
- Q3 in production, Q1 and Q6 ready for production
- Q0 is developed (first prototypes available in CHILD)
- Q1 1/2 is under development, Q10 is possible.
- Designed for all impact directions.
- Criteria are available for some body segments in frontal impacts (research programs are working on the subject)
Background and development of dummies...

Hybrid III family
• They are designed for evaluation of protection in frontal impact.
• H3, H6, H10
• Born in 1992, updated 1997
• Criteria are available for some body segments in frontal impacts

CRABI dummies
• 6m, 12m, 18m
• Designed for all impact directions.
• With or without airbag interaction
• Criteria are available for some body segments in frontal impacts
Criteria and injury mechanisms

ECE R-44:
- Resultant thoracic acceleration and vertical component of this acceleration
- Head displacement

US FMWSS213:
- + limitation of the HIC value

What is new?
ISO/TC22/SC12/WG6
Technical report with some injury risk curves
CREST program results
CHILD program results
Accidentology in coaches and buses

• No official European database is available. Some countries have statistical data on situation of children in coaches and buses.

• For protection of children in buses and coaches, specific legislations exist but there is no common position.

• From experts point of view:
 • Necessity to limit the number of children transported to the number of seats available in the vehicle.
 • It is better, as the major risk is the ejection, to have all children after a certain age restrained with a 3 pt belt than having them unrestrained. For younger ones the use of additional CRS should be required.
 • Retractor systems should be better than static systems.
Main conclusions...

• Too many children are not / not properly restrained in EU. Information, misuse reduction, and police actions are necessary.

• Knowledge both in accidents research and biomechanics has made a significant step these last years and this allows to think of a revision of R44.

• Step by step introduction of dummies and criteria seems to be possible.

• Pursuit of the development of a family of biofidelic dummies, integrating biomechanical criteria when available.

• Estimate the importance and the effect of misuse, measure the impact of the introduction of ISOFIX devices on that sensible point.