ECONOMIC COMMISSION FOR EUROPE

INLAND TRANSPORT COMMITTEE

World Forum for Harmonization of Vehicle Regulations (WP.29)
(One-hundred-and-twenty-eighth session,
12-15 November 2002, agenda item 5.3.7.)

PROPOSAL FOR A DRAFT REGULATION:

UNIFORM PROVISIONS CONCERNING THE APPROVAL OF INTERNAL COMBUSTION ENGINES
TO BE INSTALLED IN AGRICULTURAL AND FORESTRY TRACTORS AND IN NON-ROAD
MOBILE MACHINERY, WITH REGARD TO THE MEASUREMENT OF THE NET POWER,
NET TORQUE AND SPECIFIC FUEL CONSUMPTION

Transmitted by the Working Party on Pollution and Energy (GRPE)

Note: The text reproduced below was adopted by GRPE at its forty-fourth
session and is transmitted for consideration to WP.29 and AC.1. It is based
on documents TRANS/WP.29/GRPE/2001/4 and Add.1 and Add.2, as corrected
(TRANS/WP.29/GRPE/44, paras. 52-54).

This document is a working document circulated for discussion and comments. The use of this document for other purposes is the entire responsibility of the user. Documents are also available via the INTERNET: http://www.unece.org/trans/main/welcwp29.htm
1. SCOPE

1.1. This Regulation applies to the representation of the curves as a function of engine speed of the power, torque and specific fuel consumption at full load, indicated by the manufacturer for internal combustion engines to be used:

1.1.1. in category T vehicles 1/,
1.1.2. in machinery intended and suited to move, or to be moved on the ground, with or without road, operated under intermittent or constant speed.

1.2. The internal combustion engines belong to one of the following categories:

1.2.1. Reciprocating internal combustion engines (positive-ignition or compression-ignition), but excluding free piston engines;
1.2.2. Rotary piston engines (positive-ignition or compression-ignition).

2. DEFINITIONS

2.1. "Approval of an engine" means the approval of an engine type with regard to its net power measured in accordance with the procedure specified in annex 4 to this Regulation;

2.2. "Approval of an engine family" means the approval of the members of an engine family with regard to their net power in accordance with the procedure specified in annexes 5 or 6 to this Regulation;

2.3. "Engine type" means a category of engines which do not differ in such essential engine characteristics as defined in annex 1 appendix 3;

2.4. "Engine family" means a manufacturer's grouping of engines which, through their design, fulfil the grouping criteria laid down in annex 5 to this Regulation;

2.5. "Parent engine" means an engine selected from an engine family in such a way that it complies with requirements set out in annex 5 of this Regulation;

2.6. "Net power" means the power obtained on a test bench at the end of the crankshaft or its equivalent at the corresponding engine speed with the auxiliaries and equipment listed in Table 1 of annex 4 to this Regulation, determined under reference atmospheric conditions;

2.7. "Rated net power" means engine net power as declared by the manufacturer at rated speed;

2.8. "Maximum net power" means the maximum value of the net power measured at full engine load;

2.9. "Rated speed" means the maximum full load speed allowed by the governor, as specified by the manufacturer;

1/ As described in annex 7 to the Consolidated Resolution on the Construction of Vehicles (R.E.3) (TRANS/WP.29/78/Rev.1/Amend. 2).
2.10. "Maximum net power speed" means the engine speed at which the maximum net power is obtained, as specified by the manufacturer;

2.11. "Maximum torque speed" means the engine speed at which the maximum torque is obtained, as specified by the manufacturer;

2.12. "Maximum torque" means the maximum value of the net torque measured at full engine load.

3. APPLICATION FOR APPROVAL

3.1. The application for approval of an engine type or an engine family with regard to the measurement of the net power shall be submitted by the manufacturer or by his duly accredited representative.

3.2. It shall be accompanied by the following documents in triplicate: description of the engine type or engine family comprising all the relevant particulars referred to in annex 1 to this Regulation.

3.3. An engine representative of the engine type to be approved, or the parent engine, in case of an engine family, fitted with the equipment prescribed in annex 4 to this Regulation, shall be submitted to the technical service conducting the approval tests.

4. APPROVAL

4.1. If the power of the engine submitted for approval pursuant to this Regulation was measured according to the specifications of paragraph 5 below, approval of the engine type or family shall be granted.

4.2. An approval number shall be assigned to each engine type or family approved. Its first two digits (at present 00 for the Regulation in its original form) shall indicate the series of amendments incorporating the most recent major technical amendments made to the Regulation at the time of issue of the approval. The same Contracting Party shall not assign the same number to another engine type or family.

4.3. Notice of approval or of extension or of refusal of approval of an engine type or an engine family pursuant to this Regulation shall be communicated to the Parties to the 1958 Agreement applying this Regulation by means of a form conforming to the model in annex 2 to this Regulation.

4.4. There shall be affixed, conspicuously and in a readily accessible place as specified on the approval form, to every engine conforming to an engine type or an engine family approved under this Regulation an international approval mark consisting of:
4.4.1. A circle surrounding the letter "E" followed by the distinguishing number of the country which has granted approval; 2/

4.4.2. The number of this Regulation, followed by the letter "R", a dash and the approval number to the right of the circle prescribed in paragraph 4.4.1.

Alternatively, instead of affixing these approval marks and symbols to the engine, the manufacturer may decide that engine approved under this Regulation shall be accompanied by a document giving this information in order to enable the approval marks and symbol to be attached to the vehicle.

4.5. If the engine conforms to an approved type or family under one or more other Regulations annexed to the Agreement, in the country which has granted approval under this Regulation, the symbol prescribed in paragraph 4.4.1. need not be repeated; in such a case the Regulation and approval numbers and the additional symbols of all the Regulations under which approval has been granted under this Regulation shall be placed in vertical columns to the right of the symbol prescribed in paragraph 4.4.1.

4.6. The approval mark shall be placed close to or on the data plate affixed by the manufacturer to the approved type.

4.7. Annex 3 to this Regulation gives examples of arrangements of approval marks.

4.8. Every engine conforming to an engine type or an engine family approved under this Regulation must bear, in addition to the approval mark:

4.8.1. the trademark or trade name of the manufacturer of the engine;

4.8.2. the manufacturer’s engine code.

2/ 1 for Germany, 2 for France, 3 for Italy, 4 for the Netherlands, 5 for Sweden, 6 for Belgium, 7 for Hungary, 8 for the Czech Republic, 9 for Spain, 10 for Yugoslavia, 11 for the United Kingdom, 12 for Austria, 13 for Luxembourg, 14 for Switzerland, 15 (vacant), 16 for Norway, 17 for Finland, 18 for Denmark, 19 for Romania, 20 for Poland, 21 for Portugal, 22 for the Russian Federation, 23 for Greece, 24 for Ireland, 25 for Croatia, 26 for Slovenia, 27 for Slovakia, 28 for Belarus, 29 for Estonia, 30 (vacant), 31 for Bosnia and Herzegovina, 32 for Latvia, 33 (vacant), 34 for Bulgaria, 35 (vacant), 36 for Lithuania, 37 for Turkey, 38 (vacant), 39 for Azerbaijan, 40 for The former Yugoslav Republic of Macedonia, 41 (vacant), 42 for the European Community (Approvals are granted by its Member States using their respective ECE symbol), 43 for Japan, 44 (vacant), 45 for Australia, 46 for Ukraine, 47 for South Africa and 48 for New Zealand. Subsequent numbers shall be assigned to other countries in the chronological order in which they ratify or accede to the Agreement Concerning the Adoption of Uniform Technical Prescriptions for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of these Prescriptions, and the numbers thus assigned shall be communicated by the Secretary-General of the United Nations to the Contracting Parties to the Agreement.
5. SPECIFICATIONS AND TESTS

5.1. General
The components liable to affect the power of the engine shall be so designed, constructed and assembled as to enable the engine in normal use, despite the vibrations to which it may be subjected, to comply with the provisions of this Regulation.

5.2. Description of tests for internal combustion engines

5.2.1. The net power test shall consist of a run at full throttle for positive-ignition engines and at fixed full-load fuel injection pump setting for compression-ignition engines, the engine being equipped as specified in Table 1 of annex 4 to this Regulation.

5.2.2. Measurements shall be taken at a sufficient number of engine speeds to define correctly the power, torque and specific fuel consumption curves between the lowest and the highest engine speeds recommended by the manufacturer. This range of speeds must include the rotational speeds at which the engine produces its rated net power, its maximum power and its maximum torque.

5.2.3. The fuel used shall be the following:

5.2.3.1. For positive-ignition engines fuelled with petrol:
The fuel used shall be the reference fuel specified in annex 7.

5.2.3.2. For positive-ignition engines fuelled with LPG:

5.2.3.2.1. In the case of an engine with self-adaptive fuelling:
The fuel used shall be the one available on the market. In any case of dispute the fuel shall be one of the reference fuels specified in annex 7;

5.2.3.2.2. In the case of an engine without self-adaptive fuelling:
The fuel used shall be the reference fuel specified in annex 7 with the lowest C3-content, or

5.2.3.2.3. In the case of an engine labelled for one specific fuel composition:
The fuel used shall be the fuel for which the engine is labelled.

5.2.3.4. The fuel used shall be specified in the test report.

5.2.3.3. For positive-ignition engines fuelled with natural gas:

5.2.3.3.1. In the case of an engine with self-adaptive fuelling:
The fuel used shall be the one available on the market. In any case of dispute the fuel shall be one of the reference fuels specified in annex 7;
5.2.3.3.2. In the case of an engine without self-adaptive fuelling:

The fuel used shall be the one available on the market with the Wobbe Index at least 52.6 MJm⁻³ (20 °C, 101.3 kPa). In case of dispute the fuel used shall be the reference fuel GR specified in annex 7, i.e. the fuel with the highest Wobbe Index, or

5.2.3.3.3. In the case of an engine labelled for a specific range of fuels:

The fuel used shall be the one available on the market with the Wobbe Index at least 52.6 MJm⁻³ (20 °C, 101.3 kPa) if the engine is labelled for the H-range of gases, or at least 47.2 MJm⁻³ (20 °C, 101.3 kPa) if the engine is labelled for the L-range of gases. In case of dispute the fuel used shall be the reference fuel GR specified in annex 7 if the engine is labelled for the H-range of gases, or the reference fuel G23 if the engine is labelled for the L-range of gases, i.e. the fuel with the highest Wobbe Index for the relevant range, or 3/

5.2.3.3.4. In the case of an engine labelled for one specific fuel composition:

The fuel used shall be the fuel for which the engine is labelled.

5.2.3.3.5. The fuel used shall be specified in the test report.

5.2.3.4. For compression-ignition engines:

The fuel used shall be the reference fuel specified in annex 7.

5.2.4. Measurements shall be carried out according to the provisions of annex 5 to this Regulation.

5.2.5. The test report shall contain the results and all the calculations required to determine the net power, as listed in the appendix to annex 4 to this Regulation together with the characteristics of the engine, as listed in annex 1 to this Regulation.

5.3. Interpretation of Results

5.3.1. Net Power

The net power declared by the manufacturer for the type of engine (or parent engine) shall be accepted if it does not differ by more than ± 2 per cent for rated net power and more than ± 4 per cent at the other measurement points on the curve with a tolerance of ± 1.5 per cent for engine speed, from the values measured by the technical service on the engine submitted for testing.

3/ "Wobbe Index (lower Wl; or upper Wu)" means the ratio of the corresponding calorific value of a gas per unit volume and the square root of its relative density under the same reference conditions:

\[W = H_{\text{gas}} \times \sqrt{\frac{\rho_{\text{air}}}{\rho_{\text{gas}}}} \]
5.3.2. Rated speed

The rated speed declared by the manufacturer shall not deviate by more than 100 min\(^{-1}\) from the declared value.

5.3.3. Fuel consumption

The specific fuel consumption curve declared by the manufacturer for the type of engine (or parent engine) shall be accepted if it does not differ by more than ± 8 per cent at all measurement points from the values measured for the same points by the technical service on the engine submitted for testing.

5.3.4. Engine family

In case of compliance of the parent engine to the conditions in paragraphs 5.3.1 and 5.3.2, the acceptance is automatically extended to all the declared curves of the family members.

6. CONFORMITY OF PRODUCTION

The conformity of production procedures shall comply with those set out in the Agreement, appendix 2 (E/ECE/324-E/ECE/TRANS/505/Rev.2), with the following requirements:

6.1. Engines approved under this Regulation shall be so manufactured as to conform to the type approved.

6.2. The minimum requirements for conformity of production control procedures set forth in annex 6 to this Regulation shall be complied with.

7. PENALTIES FOR NON-CONFORMITY OF PRODUCTION

7.1. The approval granted in respect of an engine type or an engine family pursuant to this Regulation may be withdrawn if the requirements set forth in paragraph 6.1. above are not met or if an engine or an engine family bearing the approval mark does not conform to the type approved.

7.2. If a Contracting Party to the 1958 Agreement applying this Regulation withdraws an approval it has previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation, by means of a communication form conforming to the model in annex 2 to this Regulation.

8. MODIFICATION AND EXTENSION OF APPROVAL OF AN ENGINE TYPE OR ENGINE FAMILY

8.1. Every modification of an engine type or an engine family with regard to the characteristics in annex 1, shall be notified to the administrative department which approved the engine type or engine family. The department may then either:

8.1.1. Consider that the modifications made are unlikely to have any appreciable adverse effect and that in any case the engine still complies with the requirements; or

8.1.2. Require a further test report from the technical service responsible for conducting the tests.
8.2. Confirmation or refusal of approval, specifying the alterations shall be communicated by the procedure specified in paragraph 4.3. above to the Parties to the Agreement applying this Regulation.

8.3. The competent authority issuing the extension of approval shall assign a series number for such an extension and inform thereof the other Parties to the 1958 Agreement applying this Regulation by means of a communication form conforming to the model in annex 2 to this Regulation.

9. PRODUCTION DEFINITELY DISCONTINUED

If the holder of an approval completely ceases to manufacture an engine type or an engine family approved in accordance with this Regulation, he shall so inform the authority which granted the approval. Upon receiving the relevant communication that authority shall inform thereof the other Parties to the 1958 Agreement applying this Regulation by means of a communication form conforming to the model in annex 2 to this Regulation.

10. NAMES AND ADDRESSES OF TECHNICAL SERVICES RESPONSIBLE FOR CONDUCTING APPROVAL TESTS, AND OF ADMINISTRATIVE DEPARTMENTS

The Parties to the Agreement which apply this Regulation shall communicate to the United Nations Secretariat the names and addresses of the technical services responsible for conducting approval tests, and/or the administrative departments which grant approval, and to which forms certifying approval or extension or refusal of approval, issued in other countries, are to be sent.
Annex 1

ESSENTIAL CHARACTERISTICS OF THE INTERNAL COMBUSTION ENGINE
AND GENERAL INFORMATION CONCERNING THE CONDUCT OF TESTS

Parent engine/engine type 1/: ...

1. General

1.1. Make (name of undertaking): ...

1.2. Type and commercial description of the parent - and (if applicable) of the family engine(s) 1/: ...

1.3. Manufacturer's type coding as marked on the engine(s) 1/:

1.4. Specification of machinery to be propelled by the engine 2/:

1.5. Name and address of manufacturer:

1.6. Name and address of manufacturer's authorized representative (if any): ..

1.7. Location, coding and method of affixing of the engine identification:

1.8. Location and method of affixing of the approval mark:

1.9. Address(es) of assembly plant(s):

2. Attachments

2.1. Essential characteristics of the parent engine(s) (see appendix 1) .

2.2. Essential characteristics of the engine family (see appendix 2)

2.3. Essential characteristics of engine types within the family (see appendix 3) .
3. Characteristics of engine-related parts of the mobile machinery (if applicable) ..

4. Photographs of the parent engine ..

5. List of further attachments:

5.1. Appendix 1 / Appendix 2 / Appendix 3 1/

5.2. Declared power, torque and specific fuel consumption curves for engine/parent engine and engines within the family 1/

5.3. Any further attachments, if any: ..

1/ Strike out what does not apply.

2/ List the types and models.
ESSENTIAL CHARACTERISTICS OF THE ENGINE / PARENT ENGINE 1/

1. DESCRIPTION OF ENGINE

1.1. Manufacturer: ..

1.1.2. Manufacturer's engine code:

1.1.3. Working principle: positive-ignition/compression-ignition, four-stroke/two-stroke 1/

1.4. Bore 3/: .. mm

1.5. Stroke 3/: .. mm

1.6. Number, layout and firing order of cylinders:

1.7. Engine capacity 4/: ... cm³

1.8. Volumetric compression ratio 2/:

1.9. Combustion system description:

1.10. Drawing(s) of combustion chamber and piston crown:

1.11. Minimum cross-sectional area of inlet and outlet ports:

1.12. Cooling system: liquid/air 1/

1.12.1. Liquid

1.12.1.1. Nature of liquid: ..

1.12.1.2. Circulating pump(s): yes/no 1/

1.12.1.3. Characteristics or make(s) and type(s) (if applicable):

1.12.1.4. Drive ratio(s) (if applicable):

1.12.2. Air

1.12.2.1. Blower: yes/no 1/

1.12.2.2. Characteristics or make(s) and type(s) (if applicable):

1.12.2.3. Drive ratio(s) (if applicable):

1.13. Temperature permitted by the manufacturer

1.13.1. Liquid cooling: maximum temperature at outlet: K

1.13.2. Air cooling: reference point:

1.13.3. Maximum temperature at reference point: K
1.13.4. Maximum charge air outlet temperature at the inlet inter-cooler (if applicable): .. K
1.13.5. Maximum exhaust temperature at the point in the exhaust pipe(s) adjacent to the outer flange(s) of the exhaust manifold(s): ... K
1.13.6. Lubricant temperature: minimum:.............................. K
 maximum:.............................. K
1.14. Pressure charger: yes/no 1/
1.14.1. Make: ...
1.14.2. Type: ...
1.14.3. Description of the system (e.g. max. charge pressure, waste-gate, if applicable): ...
1.14.4. Inter-cooler: yes/no 1/
1.15. Intake system: maximum allowable intake depression at rated engine speed and at 100 % load: kPa
1.16. Exhaust system: maximum allowable exhaust back-pressure at rated engine speed and at 100 % load: kPa

2. ADDITIONAL ANTI-POLLUTION DEVICES (if any, and if not covered by another heading)
2.1. Description and/or diagram(s):

3. FUEL FEED FOR COMPRESSION-IGNITION ENGINES
3.1. Feed pump
3.1.1. Pressure or characteristic diagram 2/: kPa
3.2. Injection system
3.2.1. Pump
3.2.1.1. Make(s): ..
3.2.1.2. Type(s): ..
3.2.1.3. Maximum fuel delivery: mm3 1/ 2/ per stroke or cycle at full injection at pump speed of: min$^{-1}$ (rated) and min$^{-1}$ (maximum torque) respectively, or characteristic diagram:
3.2.1.3.1. Mention the method used: on engine/on pump bench 1/
3.2.1.4. Injection advance
3.2.1.4.1. Injection advance curve 2/:
3.2.1.4.2. Timing 2/: ..
3.2.2. Injection piping

3.2.2.1. Length: ... mm

3.2.2.2. Internal diameter: mm

3.2.3. Injector(s)

3.2.3.1. Make(s): ..

3.2.3.2. Type(s): ..

3.2.3.3. Opening pressure or characteristic diagram 1/ 2/: kPa

3.2.4. Governor

3.2.4.1. Make(s): ..

3.2.4.2. Type(s): ..

3.2.4.3. Speed at which cut-off starts under full load 2/: min⁻¹

3.2.4.4. Maximum no-load speed 2/: min⁻¹

3.2.4.5. Idling speed 2/: ... min⁻¹

3.3. Cold start system

3.3.1. Make(s): ..

3.3.2. Type(s): ..

3.3.3. Description: ...

3.3.4. Electronic Engine Management Control Unit

3.3.4.1. Make(s): ..

3.3.4.2. Type: ..

3.3.4.3. Emission related adjustment possibilities:

3.3.4.4. Further documentation: ..

4. FUEL FEED FOR POSITIVE-IGNITION ENGINES

4.1. Carburettor

4.1.1. Make(s): ..

4.1.2. Type(s): ..

4.2. Port fuel injection: single-point or multi-point 1/

4.2.1. Make(s): ..

4.2.2. Type(s): ..
4.3. Direct-injection

4.3.1. Make(s): ..

4.3.2. Type(s): ..

4.4. Fuel flow [g/h] and air/fuel ratio at rated speed and wide open throttle: ..

4.5 Electronic Engine Management Control Unit:

4.5.1. Make(s): ..

4.5.2. Type: ..

4.5.3. Emission related adjustment possibilities:

4.5.4. Further documentation: ...

5. VALVE TIMING

5.1. Maximum lift and angles of opening and closing in relation to dead centres or equivalent data: ..

5.2. Reference and/or setting ranges 1/:

5.3. Variable valve timing system (if applicable and where: intake and/or exhaust) 1/: ..

5.3.1. Type: continuous or on/off 1/

5.3.2. Cam phase shift angle: ..

6. PORTING CONFIGURATION

6.1. Position, size and number: ...

7. IGNITION SYSTEM

7.1. Ignition coil

7.1.1. Make(s): ..

7.1.2. Type(s): ..

7.1.3. Number: ..

7.2. Spark plug(s)

7.2.1. Make(s): ..

7.2.2. Type(s): ..

7.3. Magneto

7.3.1. Make(s): ..

7.3.2. Type(s): ..
7.4. Ignition timing

7.4.1. Static advance with respect to Top Dead Center [crank angle degrees] ..

7.4.2. Advance curve, if applicable

8. Engine performance (declared by the manufacturer)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated speed (min⁻¹)</td>
<td></td>
</tr>
<tr>
<td>Maximum power speed (min⁻¹)</td>
<td></td>
</tr>
<tr>
<td>Maximum torque speed (min⁻¹)</td>
<td></td>
</tr>
<tr>
<td>Rated net power (kW)</td>
<td></td>
</tr>
<tr>
<td>Maximum net power (kW)</td>
<td></td>
</tr>
<tr>
<td>Maximum net torque (Nm)</td>
<td></td>
</tr>
</tbody>
</table>

1/ Strike out what does not apply.

2/ Specify the tolerance.

3/ This value shall be rounded-off to the nearest tenth of a millimetre.

4/ This value shall be calculated with $\pi = 3.1416$ and rounded-off to the nearest cm³.
Annex 1 - Appendix 2

ESSENTIAL CHARACTERISTICS OF THE ENGINE FAMILY

1. COMMON PARAMETERS 1/

1.1. Combustion cycle: ..

1.2. Cooling medium: ...

1.3. Method of air aspiration: ...

1.4. Combustion chamber type/design: ..

1.5. Valve and porting 3/4 configuration, size and number:

1.6. Fuel system: ...

1.7. Engine management systems

 Proof of identity pursuant to drawing number(s):

1.7.1. charge cooling system: ..

1.7.2. exhaust gas recirculation 2/: ...

1.7.3. water injection/emulsion 2/: ...

1.7.4. air injection 2/: ...

1.8. Proof of identical (or lowest for the parent engine) ratio: system
 capacity/fuel delivery per stroke, pursuant to diagram number(s) 3/:
 ..

2. ENGINE FAMILY LISTING

2.1. Name of engine family: ..

2.2. Specification of engines within this family:
 ..
<table>
<thead>
<tr>
<th>Specification</th>
<th>Engines of the family</th>
<th>Parent engine 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of cylinders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated speed (min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel delivery per stroke (mm³) for compression-ignition engines, fuel flow (g/h) for positive-ignition engines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated net power (kW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum net power (kW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum power speed (min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum torque speed (min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel delivery per stroke (mm³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum torque (Nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low idle speed (min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder displacement (in % of the largest one) (see annex 5.1.3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ For full details see annex 1 - appendix 1.
2/ Give all pertinent technical data.
3/ See annex 5, paragraph 1.9.
Annex 1 - Appendix 3

ESSENTIAL CHARACTERISTICS OF ENGINE TYPE WITHIN THE FAMILY 1/

1. DESCRIPTION OF THE ENGINE

1.1. Manufacturer: ...

1.2. Manufacturer's engine code: ..

1.3. Cycle: four-stroke / two-stroke 2/

1.4. Bore 4/: ... mm

1.5. Stroke 4/: .. mm

1.6. Number, layout and firing order of cylinders:

1.7. Engine capacity 5/: ... cm³

1.8. Rated speed: .. min⁻¹

1.9. Maximum torque speed: .. min⁻¹

1.10. Volumetric compression ratio 3/:

1.11. Combustion system description:

1.12. Drawing(s) of combustion chamber and piston crown:

1.13. Minimum cross-sectional area of inlet and outlet ports:

1.14.1. Liquid

1.14.1.2. Circulating pump(s): yes/no 2/

1.14.1.3. Characteristics or make(s) and type(s) (if applicable):

1.14.1.4. Drive ratio(s) (if applicable):

1.14.2. Air

1.14.2.1. Blower: yes/no 2/

1.14.2.2. Characteristics or make(s) and type(s) (if applicable):

1.14.2.3. Drive ratio(s) (if applicable):

1.15. Temperature permitted by the manufacturer

1.15.1. Liquid cooling: maximum temperature at outlet: K
1.15.2. Air cooling: reference point: ..
 maximum temperature at reference point: K
1.15.3. Maximum charge air outlet temperature at the inlet intercooler
 (if applicable): ... K
1.15.4. Maximum exhaust temperature at the point in the exhaust pipe(s)
 adjacent to the outer flange(s) of the exhaust manifold(s): K
1.15.5. Lubricant temperature: minimum K
 maximum .. K
1.16. Pressure charger: yes/no 1/
1.16.1. Make: ..
1.16.2. Type: ..
1.16.3. Description of the system (e.g. max charge pressure, waste-gate,
 if applicable): ...
1.16.4. Inter-cooler: yes/no 1/
1.17. Intake system: maximum allowable intake depression at rated engine
 speed and at 100 % load: ... kPa
1.18. Exhaust system: maximum allowable exhaust back-pressure at rated
 engine speed and at 100 % load: kPa
2. ADDITIONAL ANTI-POLLUTION DEVICES (if any, and if not covered by
 another heading)
 Description and/or diagram(s): ..
3. FUEL FEED FOR COMPRESSION-IGNITION ENGINES
3.1. Feed pump
 Pressure 2/ or characteristic diagram: kPa
3.2. Injection system
3.2.1. Pump
3.2.1.1. Make(s): ..
3.2.1.2. Type(s): ..
3.2.1.3. Maximum fuel delivery: mm³ 2/ 3/ per stroke or cycle at full
 injection at pump speed of: min⁻¹ (rated) and min⁻¹
 (maximum torque) respectively, or characteristic diagram:
 ..
3.2.1.3.1. Mention the method used: on engine/on pump bench 1/
3.2.1.4. Injection advance
3.2.1.4.1. Injection advance curve 3/:
3.2.1.4.2. Timing 3:/ ..

3.2.2. Injection piping
3.2.2.1. Length: .. mm
3.2.2.2. Internal diameter: .. mm

3.2.3. Injector(s)
3.2.3.1. Make(s): ..
3.2.3.2. Type(s): ..
3.2.3.3. Opening pressure or characteristic diagram 2/ 3/: kPa

3.2.4. Governor
3.2.4.1. Make(s): ..
3.2.4.2. Type(s): ..
3.2.4.3. Speed at which cut-off starts under full load 3/: min⁻¹
3.2.4.4. Maximum no-load speed 3/: min⁻¹
3.2.4.5. Idling speed 3/: .. min⁻¹

3.3. Cold start system
3.3.1. Make(s): ..
3.3.2. Type(s): ..
3.3.3. Description: ..

3.4. Electronic Engine Management Control Unit:
3.4.1. Make(s): ..
3.4.2. Type: ..
3.4.3. Emission related adjustment possibilities:
3.4.4. Further documentation: ...

4. FUEL FEED FOR POSITIVE-IGNITION ENGINES
4.1. Carburettor
4.1.1. Make(s): ..
4.1.2. Type(s): ..

4.2. Port fuel injection: single-point or multi-point 2/
4.2.1. Make(s): ..
4.2.2. Type(s): ..
4.3. Direct-injection
 4.3.1. Make(s): ..
 4.3.2. Type(s): ..

4.4. Fuel flow [g/h] and air/fuel ratio at rated speed and wide open throttle

4.5. Electronic engine management control unit
 4.5.1. Make(s): ..
 4.5.2. Type: ...
 4.5.3. Emission related adjustment possibilities:
 4.5.4. Further documentation: ...

5. VALVE TIMING
 5.1. Maximum lift and angles of opening and closing in relation to dead centers or equivalent data:
 5.2. Reference and/or setting range 2/:
 5.3. Variable valve timing system (if applicable and where: intake and/or exhaust) 2/: ...
 5.3.1. Type: continuous or on/off 2/
 5.3.2. Cam phase shift angle: ..

6. PORTING CONFIGURATION
 6.1. Position, size and number: ..

7. IGNITION SYSTEM
 7.1. Ignition coil
 7.1.1. Make(s): ..
 7.1.2. Type(s): ..
 7.1.3. Number
 7.2. Spark plug(s)
 7.2.1. Make(s): ..
 7.2.2. Type(s): ..
 7.3. Magneto
 7.3.1. Make(s): ..
 7.3.2. Type(s): ..
7.4. Ignition timing

7.4.1. Static advance with respect to Top Dead Center [crank angle degrees]: ..

7.4.2. Advance curve, if applicable: ...

__

1/ For full details see annex 1 - appendix 1.
2/ Strike out what does not apply.
3/ Specify the tolerance.
4/ This value shall be rounded-off to the nearest tenth of a millimetre.
5/ This value shall be calculated with $\pi = 3.1416$ and rounded-off to the nearest cm3.
Annex 2

(Maximum format: A4 (210 x 297 mm))

COMMUNICATION

issued by: Name of administration:

..
..

concerning 2/: APPROVAL GRANTED
APPROVAL EXTENDED
APPROVAL REFUSED
APPROVAL WITHDRAWN
PRODUCTION DEFINITELY DISCONTINUED

of an engine or an engine family pursuant to Regulation No. XXX.

Approval No........................Extension No.

1. Trade name or mark of engine:..

2. Manufacturer's designation of the parent and (if applicable) of the
 family engine(s) type(s) 2/..

3. Manufacturer's type coding as marked on the engine(s):...............

3.1. Location:..

3.2. Method of affixing:..

4. Name and address of manufacturer:....................................

4.1. Name and address of manufacturer's authorized representative
 (if any):..

5. Location, coding and method of affixing of the engine identification
 number:..

6. Technical service responsible for conducting approval tests:........

7. Date of report issued by that service:...............................

8. Number of report issued by that service:............................

9. Location and method of affixing of the ECE approval mark:.........
10. Reason(s) for extension of approval (if applicable):

11. Main specification of internal combustion engine

11.1. Approved data

11.1.1. Rated net power:kW, atmin^{-1}

11.1.2. Maximum net power:kW, atmin^{-1}

11.1.3. Maximum net torque:Nm, atmin^{-1}

11.1.3. Rated speed: min^{-1} Rated net power:kW

11.2. Essential characteristics of the engine type/parent engine type:

11.2.1. Operating principle:

11.2.1.1. Positive-ignition/compression-ignition 2/

11.2.1.2. four-stroke/two-stroke 2/

11.2.2. Number, layout and firing order of cylinders:

11.2.3. Cylinder capacity: .. cm³

11.2.4. Fuel feed: carburettor/indirect injection/direct injection 2/

11.2.3. Pressure-charger device: Yes/No 2/

11.2.4. Exhaust after-treatment device: Yes/No 2/

11.3. Engine fuel requirements: leaded petrol / unleaded petrol / diesel
fuel / NG / LPG: 2/

11.4. Restriction of use:

11.4.1. Particular conditions to be respected in the installation of the engine(s) on the machinery

11.4.1.1. Maximum allowable intake depression: kPa

11.4.1.2. Maximum allowable back-pressure: kPa

11.4.2. Any other (if applicable): ..
12. Main family members specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Engines of the family</th>
<th>Parent engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer's type coding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of cylinders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine capacity (cm³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated net power (kW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated speed (min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum net power (kW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. net power speed (min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. net torque (Nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. net torque speed (min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low idle speed (min⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restrictions of use [Yes/No]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. Approval granted/extended/refused/withdrawn 2/

14. Place: ..

15. Date: ...

16. Signature: ...

17. The documents filed with the request for approval or extension may be obtained on request.

1/ Distinguishing number of the country which has granted/extended/refused/withdrawn approval (see approval provisions in the Regulation).

2/ Strike out what does not apply.
Annex 3

ARRANGEMENTS OF APPROVAL MARKS

Model A

(see paragraph 4.4. of this Regulation)

\[
\begin{array}{c}
\text{E4} \\
\text{XX R - 002492}
\end{array}
\]

\[a = 8 \text{ mm min.}\]

The above approval mark affixed to an engine shows that the engine type concerned has been approved in the Netherlands (E 4) with regard to the measurement of the net power, pursuant to Regulation No. XX and under the approval number 002492. The approval number indicates that the approval was granted in accordance with the requirements of Regulation No. XX in its original form.

Model B

(see paragraph 4.5. of this Regulation)

\[
\begin{array}{c}
\text{E4} \\
\text{XX 00 2492} \\
\text{96 02 1628}
\end{array}
\]

\[a = 8 \text{ mm min.}\]

The above approval mark affixed to an engine shows that the engine type concerned has been approved in the Netherlands (E 4) pursuant to Regulations No. XX and 96 1/. The first two digits of the approval numbers indicate that, at the dates when the respective approvals were granted, Regulation No. XX had not been modified, and Regulation No. 96 already included the 02 series of amendments.

1/ The second number is given merely as an example.
Annex 4

METHOD FOR MEASURING INTERNAL COMBUSTION ENGINE NET POWER

1. These provisions apply to the method for determining the power curve at full load of an internal combustion engine operated under intermittent speed as a function of engine speed and the rated speed and rated net power of an internal combustion engine under constant speed.

2. TEST CONDITIONS

2.1. The engine shall have been run-in according to the manufacturer's recommendations.

2.2. If the power measurement can be carried out only on an engine with the gearbox mounted, the efficiency of the gearbox shall be taken into account.

2.3. Auxiliaries and equipment

2.3.1. Auxiliaries and equipment to be fitted

During the test, the auxiliaries necessary for the engine operation in the intended application (as listed in Table 1) shall be installed on the test bench as far as possible in the same position as in the intended application.

2.3.2. Auxiliaries and equipment to be removed

Certain accessories whose definition is linked with the operation of the machine and which may be mounted on the engine shall be removed for the test. The following non-exhaustive list is given as a sample:

(i) air compressor for brakes
(ii) power steering compressor
(iii) suspension compressor
(iv) air-conditioning system

Where accessories cannot be removed, the power they absorb in the unloaded condition may be determined and added to the measured engine power (see note h of Table 1). If this value is greater than 3 per cent of the maximum power at the test speed it may verified by the test authority.
Table 1

EQUIPMENT AND AUXILIARIES TO BE INSTALLED FOR THE TEST TO DETERMINE ENGINE POWER

<table>
<thead>
<tr>
<th>Number</th>
<th>Equipment and auxiliaries</th>
<th>Fitted for emission test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inlet system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inlet manifold</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Crankcase emission control system</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Control devices for dual induction inlet manifold system</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Air flow meter</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Air inlet duct work</td>
<td>Yes. a/</td>
</tr>
<tr>
<td></td>
<td>Air filter</td>
<td>Yes. a/</td>
</tr>
<tr>
<td></td>
<td>Inlet silencer</td>
<td>Yes. a/</td>
</tr>
<tr>
<td></td>
<td>Speed-limiting device</td>
<td>Yes. a/</td>
</tr>
<tr>
<td>2</td>
<td>Induction-heating device of inlet manifold</td>
<td>Yes, standard production equipment. If possible to be set in the most favourable condition.</td>
</tr>
<tr>
<td>3</td>
<td>Exhaust system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exhaust purifier</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Exhaust manifold</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Connecting pipes</td>
<td>Yes. b/</td>
</tr>
<tr>
<td></td>
<td>Silencer</td>
<td>Yes. E/</td>
</tr>
<tr>
<td></td>
<td>Tail pipe</td>
<td>Yes. E/</td>
</tr>
<tr>
<td></td>
<td>Exhaust brake</td>
<td>No. C/</td>
</tr>
<tr>
<td></td>
<td>Pressure charging device</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td>4</td>
<td>Fuel supply pump</td>
<td>Yes, standard production equipment. d/</td>
</tr>
<tr>
<td>5</td>
<td>Carburation equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carburettor</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Electronic control system, air flow meter, etc.</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Equipment for gas engines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure reducer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaporator</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Mixer</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td>6</td>
<td>Fuel injection equipment (petrol and diesel)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-filter</td>
<td>Yes, standard production or test bed equipment.</td>
</tr>
<tr>
<td></td>
<td>Filter</td>
<td>Yes, standard production or test bed equipment.</td>
</tr>
<tr>
<td></td>
<td>Pump</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>High-pressure pipe</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Injector</td>
<td>Yes, standard production equipment. e/</td>
</tr>
<tr>
<td></td>
<td>Air inlet valve</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Electronic control system, air flow meter, etc.</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Governor/control system</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td></td>
<td>Automatic full-load stop for the control rack depending on atmospheric conditions</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td>7</td>
<td>Liquid-cooling equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiator</td>
<td>No.</td>
</tr>
<tr>
<td></td>
<td>Fan</td>
<td>No.</td>
</tr>
<tr>
<td></td>
<td>Fan cowl</td>
<td>No.</td>
</tr>
<tr>
<td></td>
<td>Water pump</td>
<td>Yes, standard production equipment. f/</td>
</tr>
<tr>
<td></td>
<td>Thermostat</td>
<td>Yes, standard production equipment. g/</td>
</tr>
<tr>
<td>Number</td>
<td>Equipment and auxiliaries</td>
<td>Fitted for emission test</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>8</td>
<td>Air cooling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cowl</td>
<td>No. h/</td>
</tr>
<tr>
<td></td>
<td>Fan or Blower</td>
<td>No. n/</td>
</tr>
<tr>
<td></td>
<td>Temperature-regulating device</td>
<td>No. -</td>
</tr>
<tr>
<td>9</td>
<td>Electrical equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generator</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td></td>
<td>Spark distribution system</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td></td>
<td>Coil or coils</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td></td>
<td>Wiring</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td></td>
<td>Spark plugs</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td></td>
<td>Electronic control system</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td></td>
<td>including knock sensor/spark retard system</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td>10</td>
<td>Pressure charging equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compressor driven either</td>
<td></td>
</tr>
<tr>
<td></td>
<td>directly by the engine</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td></td>
<td>and/or by the exhaust gases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charge air cooler</td>
<td>Yes, standard production or test bed equipment. h/ , k/</td>
</tr>
<tr>
<td></td>
<td>Coolant pump or fan</td>
<td>No. h/</td>
</tr>
<tr>
<td></td>
<td>(engine-driven)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coolant flow control device</td>
<td>Yes, standard production equipment.</td>
</tr>
<tr>
<td>11</td>
<td>Auxiliary test-bed fan</td>
<td>Yes, if necessary.</td>
</tr>
<tr>
<td>12</td>
<td>Anti-pollution device</td>
<td>Yes, standard production equipment. i/</td>
</tr>
<tr>
<td>13</td>
<td>Starting equipment</td>
<td>Test bed equipment. m/</td>
</tr>
<tr>
<td>14</td>
<td>Lubricating oil pump</td>
<td>Yes, standard production equipment.</td>
</tr>
</tbody>
</table>

a/ The complete inlet system shall be fitted as provided for the intended application:

(i) where there is a risk of an appreciable effect on the engine power;

(ii) in the case of naturally aspirated spark ignition engines;

(iii) when the manufacturer requests that this should be done.

In other cases, an equivalent system may be used and a check should be made to ascertain that the intake pressure does not differ by more than 100 Pa from the upper limit specified by the manufacturer for a clean air filter.

b/ The complete exhaust system shall be fitted as provided for the intended application:

(i) where there is a risk of an appreciable effect on the engine power;

(ii) in the case of naturally aspirated spark ignition engines;

(iii) when the manufacturer requests that this should be done.
In other cases, an equivalent system may be installed provided the pressure measured does not differ by more than 1,000 Pa from the upper limit specified by the manufacturer.

c/ If an exhaust brake is incorporated in the engine, the throttle valve shall be fixed in the fully open position.

d/ The fuel feed pressure may be adjusted, if necessary, to reproduce the pressure existing in the particular engine application (particularly when a "fuel return" system is used).

e/ The air intake valve is the control valve for the pneumatic governor of the injection pump. The governor or the fuel injection equipment may contain other devices which may affect the amount of injected fuel.

f/ The cooling-liquid circulation shall be operated by the engine water pump only. Cooling of the liquid may be produced by an external circuit, such that the pressure loss of this circuit and the pressure at the pump inlet remain substantially the same as those of the engine cooling system.

g/ The thermostat may be fixed in the fully open position.

h/ When the cooling fan or blower is fitted for the test, the power absorbed shall be added to the results, except for engines where such auxiliaries are an integral part of the engine (i.e.: cooling fans of air cooled engines directly fitted on the crankshaft). The fan or blower power shall be determined at the speeds used for the test either by calculation from standard characteristics or by practical tests.

i/ Minimum power of the generator: the electrical power of the generator shall be limited to that necessary for operation of accessories which are indispensable for engine operation. If the connection of a battery is necessary, a fully charged battery in good condition shall be used.

k/ Charge air-cooled engines shall be tested with charge air cooling, whether liquid - or air-cooled, but if the manufacturer prefers, a test bench system may replace the air cooler. In either case, the measurement of power at each speed shall be made with the maximum pressure drop and the minimum temperature drop of the engine air across the charge air cooler on the test bench system as those specified by the manufacturer.

l/ These may include, for example, exhaust-gas recirculation (EGR system *), catalytic converter, thermal reactor, secondary air-supply system and fuel evaporation protecting system.

m/ The power for electrical or other starting systems shall be provided from the test bed.

* Exhaust gas recirculation.
2.4. Setting Conditions

The setting conditions for the test to determine the net power are indicated in Table 2.

Table 2

<table>
<thead>
<tr>
<th>SETTING CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Setting of carburettor(s), evaporator/pressure regulator</td>
</tr>
<tr>
<td>2. Setting of injection pump delivery system</td>
</tr>
<tr>
<td>3. Ignition or injection timing (timing curve)</td>
</tr>
<tr>
<td>4. Governor setting</td>
</tr>
<tr>
<td>5. Emission control devices</td>
</tr>
<tr>
<td>6. Boost Control</td>
</tr>
</tbody>
</table>

In accordance with the manufacturer's production specifications, and used without further alteration for the particular application.

3. DATA TO BE RECORDED

3.1. Data to be recorded are those indicated in paragraph 4 of the appendix to this annex. Performance data shall be obtained under stabilised operating conditions with an adequate fresh air supply to the engine. Combustion chambers may contain deposits, but in limited quantity. Test conditions, such as inlet air temperature, shall be selected as near to reference conditions (see paragraph 5.2. of this annex) as possible in order to minimise the magnitude of the correction factor.

3.2. The temperature of the inlet air to the engine shall be measured within the inlet ductwork. The inlet depression measurement shall be made at the same point. The thermometer or thermocouple shall be shielded from fuel spray-back and radiant heat and located directly in the air stream. A sufficient number of locations shall be used to give a representative average of the inlet temperature.

3.3. The inlet depression shall be measured downstream of the entry ducts, air filter, inlet silencer or speed-limiting device (if fitted).

3.4. The absolute pressure at the entry to the engine downstream of the compressor and heat exchanger, if fitted, shall be measured in the inlet manifold and at any other point where pressure has to be measured to calculate correction factors.

3.5. The exhaust back pressure shall be measured at a point at least three pipe diameters downstream from the outlet flange(s) of the exhaust manifold(s) and downstream at the turbocharger(s), if fitted. The location shall be specified.

3.6. No data shall be taken until torque, speed and temperatures have been maintained substantially constant for at least one minute.

3.7. The engine speed during a run or reading shall not deviate from the selected speed by more than ± 1 per cent or ± 10 min, whichever is greater.
3.8. Observed brake load, fuel consumption and inlet air temperature data shall be taken simultaneously and shall be the average of two stabilised consecutive values which do not vary more than 2 per cent for the brake load.

3.9. The temperature of the coolant at the outlet from the engine shall be kept at the value specified by the manufacturer. If no temperature is specified by the manufacturer, the temperature shall be 353 K ± 5 K. For air-cooled engines, the temperature at a point indicated by the manufacturer shall be kept within +0/-20 K of the maximum value specified by the manufacturer in the reference conditions.

3.10. For C.I. engines, the fuel temperature shall be measured at the inlet of the fuel injection pump and maintained within 306 – 316 K (33–43 °C) for positive-ignition engines the fuel temperature shall be measured as near as possible to the inlet of the carburettor or assembly of fuel injectors and maintained within 293 – 303 K (20–30 °C).

3.11. The temperature of the lubricating oil measured in the oil pump or at the outlet from the coil cooler, if fitted, shall be maintained within the limits established by the engine manufacturer.

3.12. An auxiliary regulating system may be used if necessary to maintain the temperatures within the limits specified in paragraphs 3.9, 3.10. and 3.11. above of this annex.

4. ACCURACY OF MEASUREMENTS

4.1. Torque: ± 1 per cent of measured torque. The torque measuring system shall be calibrated to take friction losses into account. The accuracy in the lower half of the measuring range of the dynamometer bench may be ± 2 per cent of measured torque.

4.2. Engine speed: 0.5 per cent of measured speed.

4.3. Fuel consumption: ± 1 per cent of measured consumption.

4.4. Fuel temperature: ± 2 K.

4.5. Engine inlet air temperature: ± 2 K.

5. POWER CORRECTION FACTORS

5.1. Definition

The power correction factor is the coefficient to determine the engine power under the reference atmospheric conditions specified in 5.2. below.

\[P_o = \alpha P \]
where:

\(P_0 \) is the corrected power (i.e. power under reference atmospheric conditions)

\(\alpha \) is the correction factor (\(\alpha_a \) or \(\alpha_d \))

\(P \) is the measured power (test power)

5.2. Reference atmospheric conditions

5.2.1. Temperature (\(T_0 \)): 298 K (25 °C)

5.2.2. Dry pressure (\(P_{so} \)): 99 kPa

The dry pressure is based on a total pressure of 100 kPa and a water vapour pressure of 1 kPa.

5.3. Test atmospheric conditions

The atmospheric conditions during the test shall be the following:

5.3.1. Temperature (\(T \))

For positive-ignition engines: 288 K < \(T < 308 \) K

For compression-ignition engines: 283 K < \(T < 313 \) K

5.3.2. Pressure (\(p_s \))

90 kPa < \(p_s < 110 \) kPa

5.4. Determination of correction factor \(\alpha_a \) and \(\alpha_d \)

5.4.1. Naturally aspirated or pressure-charged positive-ignition engine

The correction factor \(\alpha_a \) is obtained by applying the formula:

\[
\alpha_a = \left(\frac{99}{p_s} \right)^{12} \left(\frac{T}{298} \right)^{0.6}
\]

where:

\(p_s \) is the total dry atmospheric pressure in kilopascals (kPa); i.e. the total barometric pressure minus water vapour pressure,

\(T \) is the absolute temperature in kelvins (K) of the air drawn in by the engine.

1/ The tests may be carried out in air-conditioned test rooms where the atmospheric conditions may be controlled.

In the case of engines fitted with automatic air temperature control, if the device is such that at full load at 25 °C no heated air is added, the test shall be carried out with the device fully closed. If the device is still operating at 25 °C then the test is made with the device operating normally and the exponent of the temperature term in the correction factor shall be taken as zero (no temperature correction).
Conditions to be complied with in the laboratory

For a test to be valid, the correction factor as must be such that

\[0.96 < \alpha_a < 1.06 \]

If these limits are exceeded, the corrected value obtained shall be given and the test conditions (temperature and pressure) precisely stated in the test report.

5.4.2. Compression-ignition engines - factor \(\alpha_d\)

The power correction factor \((\alpha_d)\) for compression-ignition engines at constant fuel rate is obtained by applying the formula:

\[\alpha_d = (f_a)^{f_m} \]

where:

- \(f_a\) is the atmospheric factor
- \(f_m\) the characteristic parameter for each type of engine and adjustment

5.4.2.1. Atmospheric factor \(f_a\)

This factor indicates the effects of environmental conditions (pressure, temperature and humidity) on the air drawn in by the engine. The atmospheric factor formula differs according to the type of engine.

5.4.2.1.1. Naturally aspirated and mechanically pressure charged engines

\[f_a = \left(\frac{99}{p_s}\right) \times \left(\frac{T}{298}\right)^{0.7} \]

5.4.2.1.2. Turbocharged engines with or without charge air cooling

\[f_a = \left(\frac{99}{p_s}\right)^{0.7} \times \left(\frac{T}{298}\right)^{15} \]

5.4.2.2. Engine factor \(f_m\)

\(f_m\) is a function of \(q_c\) (fuel flow corrected) as follows:

\[f_m = 0.036 \times q_c - 1.14 \]

and

\[q_c = q/r \]

where:

- \(q\) is the fuel flow in milligram per cycle per litre of total swept volume (mg/(l.cycle))
- \(r\) is the pressure ratio of compressor outlet and compressor inlet \((r = 1\) for naturally aspirated engines)

This formula is valid for a value interval of \(q_c\) included between 37.2 mg/(l.cycle) and 65 mg/(l.cycle).
For \(q_c \) values lower than 37.2 mg/(l.cycle), a constant value of \(f_m = 0.2 \) will be taken.

For \(q_c \) values higher than 65 mg/(l.cycle), a constant value of \(f_m = 1.2 \) will be taken (see figure):

5.4.2.3. Conditions to be complied with in the laboratory

For a test to be valid, the correction factors \(\alpha_a \) must be such that

\[
0.93 < \alpha_a < 1.07
\]

If these limits are exceeded, the corrected value obtained shall be given and the test conditions (temperature and pressure) precisely stated in the test report.
Annex 4 - Appendix

RESULTS OF TESTS FOR MEASURING NET ENGINE POWER

This form shall be completed by the laboratory performing the test.

1. TEST CONDITIONS

1.1. Location of exhaust back-pressure measuring point

1.2. Location of inlet depression measuring point

1.3. Characteristics of the dynamometer

1.3.1. Make: .. Model:

1.3.2 Type: ..

2. FUEL

2.1. For positive-ignition engines operating on liquid fuel

2.1.1. Make: ..

2.1.2. Specification: ..

2.1.3. Anti-knock additive (lead, etc):

2.1.3.1. Type: ..

2.1.3.2. Content: ... mg/l

2.1.4. Octane number RON: (ASTM D 26 99-70)

2.1.4.1. Specify density: ... g/cm³ at 288 K

2.1.4.2. Lower calorific value: kJ/kg

2.2. For positive-ignition engines operating on gaseous fuel

2.2.1. Make: ..

2.2.2. Specification: ..

2.2.3. Storage pressure: .. bar

2.2.4. Utilization pressure: .. bar

2.2.5. Lower calorific value: kJ/kg

2.3. For compression-ignition engines operating on gaseous fuels

2.3.1. Feed system: gas

2.3.2. Specification of gas used:

2.3.3. Fuel oil/gas proportion:
2.3.4. Lower calorific value: ..

2.4. For compression-ignition engines operating on liquid fuel

2.4.1. Make: ..

2.4.2. Specification of fuel used:

2.4.3. Cetane number (ASTM D 976-71):

2.4.4. Specify density: ... g/cm³ at 288 K

2.4.5. Lower calorific value:kJ/kg

3. LUBRICANT

3.1. Make: ..

3.2. Specification: ...

3.3. SAE viscosity: ..
4. **Detailed results of measurements */**

<table>
<thead>
<tr>
<th>Measure</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>Total, kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine speed, min⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured torque, Nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured power, kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured fuel flow, g/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barometric pressure, kPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water vapour pressure, kPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet air temperature, K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power to be added for equipment and auxiliaries in excess of Table 1, kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measure				
Power correction factor				
Corrected brake power, kW				
Net power, kW				
Net torque, Nm				
Corrected specific fuel consumption g/(kWh)				
Cooling liquid temperature at outlet, K				
Lubricating oil temperature at measuring point, K				
Air temperature after pressure-charger, K				
Fuel temperature at injection pump inlet, K				
Air temperature after charge air cooler, K				
Pressure after pressure-charger, kPa				
Pressure after charge air cooler, kPa				
Inlet depression, Pa				
Exhaust back-pressure, Pa				
Fuel delivery, mm³/stroke or cycle 1/				

*/ The characteristic curves of the net power and the net torque shall be drawn as a function of the engine speed.

1/ Strike out what does not apply.

2/ Calculated with the net power for compression-ignition and positive-ignition engines, in the latter case multiplied by the power correction factor.
1. PARAMETERS DEFINING THE ENGINE FAMILY

The engine family may be defined by basic design parameters which must be common to engines within the family. In some cases there may be interaction of parameters. These effects must also be taken into consideration to ensure that only engines with similar exhaust emission characteristics are included within an engine family.

In order that engines be considered to belong to the same engine family, the following list of basic parameters must be common:

1.1. Combustion cycle

four-stroke
two-stroke

1.2. Cooling medium:

air
water
oil

1.3. Individual cylinder displacement

Individual cylinder displacement, within 85 and 100 per cent of the largest displacement within the engine family.

1.4. Method of air aspiration

naturally aspirated
pressure-charged

1.5. Fuel type

diesel
petrol
gaseous fuel (NG or LPG)

1.6. Combustion chamber type/design

pre-chamber
swirl chamber
open chamber

1.7. Valve and porting 3/4 configuration, size and number

cylinder head
cylinder wall
crankcase
1.8. Fuel system

1.8.1. For compression-ignition engines

- pump-line-injector
- in-line pump
- distributor pump
- single element
- unit injector

1.8.2. For positive-ignition engines

- carburettor
- port fuel injection
- direct injection

1.9. Miscellaneous features

- exhaust gas recirculation
- water injection (emulsion)
- air injection
- charge cooling system

1.10. Exhaust after-treatment

- oxidation catalyst
- reduction catalyst
- thermal reactor
- particulate trap

2. CHOICE OF THE PARENT ENGINE

2.1. In the case of diesel engines the parent engine of the family shall be selected using the primary criteria of the highest fuel delivery per stroke at the declared maximum torque speed.

In the event that two or more engines share this primary criteria, the parent engine shall be selected using the secondary criteria of highest fuel delivery per stroke at rated speed. Under certain circumstances, the approval authority may conclude that the family can best be characterized by testing a second engine. Thus, the approval authority may select an additional engine for test.

2.2. In the case of S.I. engines the parent engine of the family shall be selected using the primary criteria of the fuel flow (g/h).
Annex 6

CHECKS ON CONFORMITY OF PRODUCTION

1. GENERAL

These requirements are consistent with tests to be held to check conformity of production (COP), according to paragraph 6.2. of this Regulation.

2. TEST PROCEDURES

The methods of testing and measuring instruments shall be those described in annex 4 to this Regulation.

3. COLLECTION OF SAMPLES

3.1. Case of an engine type

One engine has to be chosen. If after the test of paragraph 5.1. below, the engine is not considered as conforming to the requirements of this Regulation, two more engines have to be tested.

3.2. Case of a family of engines

In case of an approval granted to a family of engines the COP shall be run on one member of the family, which is not the parent engine. In case of failure of the COP test, the two more engines shall be of the same member type.

4. MEASUREMENT CRITERIA

4.1. Net power and specific fuel consumption of internal combustion engine

Measurements shall be taken at a sufficient number of engine speeds to define correctly the power, torque and specific fuel consumption curves between the lowest and the highest engine speeds recommended by the manufacturer as defined in paragraphs 2.9 and 2.11. of this Regulation.

The values measured by the technical service for the engine sampled shall not differ by more than ± 5 per cent for the net power (torque), and ± 10 per cent for the specific fuel consumption, at all measurement points on the curve with a tolerance of ± 5 per cent for engine speed.

5. EVALUATION OF RESULTS

If the net power and fuel consumption figures of the second and/or third engine of paragraph 3. do not fulfil the requirements of paragraph 4. above, the production shall be considered not to conform to the requirements of this Regulation and the provision of paragraph 7. of this Regulation shall be put into effect.
Annex 7

TECHNICAL DATA OF REFERENCE FUELS

1. **Technical data of the LPG reference fuels**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Limits Fuel A</th>
<th>Limits Fuel B</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Octane Number</td>
<td>1</td>
<td>92.5 (1)</td>
<td>92.5</td>
<td>EN 589 Annex B</td>
</tr>
<tr>
<td>Composition:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3 content % vol</td>
<td>48</td>
<td>52</td>
<td>83</td>
<td>ISO 7941</td>
</tr>
<tr>
<td>C4 content % vol</td>
<td>48</td>
<td>52</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Olefins % vol</td>
<td></td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Evaporation residue mg/kg</td>
<td></td>
<td>50</td>
<td>50</td>
<td>NFM 41-015</td>
</tr>
<tr>
<td>Total sulphur content ppm mass (1)</td>
<td>50</td>
<td>50</td>
<td>EN 24260</td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulphide</td>
<td></td>
<td>None</td>
<td>None</td>
<td>ISO 8819</td>
</tr>
<tr>
<td>Copper strip corrosion rating</td>
<td>Class 1</td>
<td>class 1</td>
<td>ISO 6251(2)</td>
<td></td>
</tr>
<tr>
<td>Water at 0°C</td>
<td></td>
<td>free</td>
<td>free</td>
<td>visual inspection</td>
</tr>
</tbody>
</table>

(1) Value to be determined at standard conditions 293.2 K (20 °C) and 101.3 kPa

(2) This method may not accurately determine the presence of corrosive materials if the sample contains corrosion inhibitors or other chemicals, which diminish the corrosivity of the sample to the copper strip. Therefore, the addition of such compounds for the sole purpose of biasing the test method is prohibited.
2. Technical data of NG reference fuels

European market fuels are available in two ranges:
- the H range, whose extreme reference fuels are GR and G23;
- the L range, whose extreme reference fuels are G23 and G25.

The characteristics of GR, G23 and G25 reference fuels are summarised below:

<table>
<thead>
<tr>
<th>Reference fuel GR</th>
<th>Limits</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Units</td>
<td>Basis</td>
</tr>
<tr>
<td>Composition:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>% mole</td>
<td>-</td>
</tr>
<tr>
<td>Ethane</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Balance (* *)</td>
<td>% mole</td>
<td>-</td>
</tr>
<tr>
<td>Sulphur content</td>
<td>mg/m³ (**)</td>
<td>-</td>
</tr>
</tbody>
</table>

(*) Inerts + C₂,

(**) Value to be determined at standard conditions (293.2 K (20°C) and 101.3 kPa).

<table>
<thead>
<tr>
<th>References fuel G23</th>
<th>Limits</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Units</td>
<td>Basis</td>
</tr>
<tr>
<td>Composition:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>92.5</td>
<td>91.5</td>
</tr>
<tr>
<td>Balance (* *)</td>
<td>% mole</td>
<td>-</td>
</tr>
<tr>
<td>N₂</td>
<td>7.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Sulphur content</td>
<td>mg/m³ (**)</td>
<td>-</td>
</tr>
</tbody>
</table>

(*) Inerts (different from N₂) + C₂ + C₂,

(**) Value to be determined at standard conditions (293.2 K (20°C) and 101.3 kPa).
Reference fuel G25

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Units</th>
<th>Basis</th>
<th>Limits</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Composition:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td></td>
<td>mole</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>Balance (*)</td>
<td></td>
<td>mole</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N₂</td>
<td></td>
<td>mole</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Sulphur content</td>
<td>mg/m³</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

(*) Inerts (different from N₂) +C₂ +C₃,

(**) Value to be determined at standard conditions (293.2 K (20°C) and 101.3 kPa).

3. Reference fuel for positive-ignition engines

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Limits (2)</th>
<th>Test Method</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research octane number, RON</td>
<td>95.0</td>
<td>-</td>
<td>EN 25164</td>
<td>1993</td>
</tr>
<tr>
<td>Motor octane number, MON</td>
<td>85.0</td>
<td>-</td>
<td>EN 25163</td>
<td>1993</td>
</tr>
<tr>
<td>Density at 15°C</td>
<td>kg/m³</td>
<td>748</td>
<td>775</td>
<td>ISO 3675</td>
</tr>
<tr>
<td>Reid vapour pressure</td>
<td>kPa</td>
<td>56.0</td>
<td>95.0</td>
<td>EN 12</td>
</tr>
<tr>
<td>Distillation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- initial boiling point °C</td>
<td>24</td>
<td>40</td>
<td>EN-ISO 3405</td>
<td>1988</td>
</tr>
<tr>
<td>- evaporated at 100°C per cent v/v</td>
<td>49.0</td>
<td>57.0</td>
<td>EN-ISO 3405</td>
<td>1988</td>
</tr>
<tr>
<td>- evaporated at 150°C per cent v/v</td>
<td>81.0</td>
<td>87.0</td>
<td>EN-ISO 3405</td>
<td>1988</td>
</tr>
<tr>
<td>- final boiling point °C</td>
<td>190</td>
<td>215</td>
<td>EN-ISO 3405</td>
<td>1988</td>
</tr>
<tr>
<td>Residue per cent</td>
<td>-</td>
<td>2</td>
<td>EN-ISO 3405</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbon analysis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- olefins per cent v/v</td>
<td>-</td>
<td>10</td>
<td>ASTM D 1319</td>
<td>1995</td>
</tr>
<tr>
<td>- aromatics(4) per cent v/v</td>
<td>28.0</td>
<td>40.0</td>
<td>ASTM D 1319</td>
<td>1995</td>
</tr>
<tr>
<td>- benzene per cent v/v</td>
<td>-</td>
<td>1.0</td>
<td>pr. EN 12177 1998</td>
<td></td>
</tr>
<tr>
<td>- saturates per cent v/v</td>
<td>-</td>
<td>Balance</td>
<td>ASTM D 1319</td>
<td>1995</td>
</tr>
<tr>
<td>Carbon/hydrogen ratio</td>
<td>Report</td>
<td>Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidation stability(5)</td>
<td>mn.</td>
<td>480</td>
<td>EN-ISO 7536</td>
<td>1996</td>
</tr>
<tr>
<td>Oxygen content(6)</td>
<td>per cent m/m</td>
<td>2.3</td>
<td>EN 1601</td>
<td>1997</td>
</tr>
<tr>
<td>Existent gum</td>
<td>mg/ml</td>
<td>-</td>
<td>EN-ISO 6246 1997</td>
<td></td>
</tr>
<tr>
<td>Sulphur content(7)</td>
<td>mg/kg</td>
<td>-</td>
<td>100</td>
<td>pr. EN-ISO 14596 1998</td>
</tr>
<tr>
<td>Copper corrosion at 50°C</td>
<td>g/l</td>
<td>-</td>
<td>1</td>
<td>EN-ISO 2160</td>
</tr>
<tr>
<td>Lead content</td>
<td>g/l</td>
<td>-</td>
<td>0.005</td>
<td>EN 237</td>
</tr>
<tr>
<td>Phosphorus content</td>
<td>g/l</td>
<td>-</td>
<td>0.0013</td>
<td>ASTM D 3231</td>
</tr>
</tbody>
</table>
4. Reference fuel for compression-ignition engines 1/

<table>
<thead>
<tr>
<th></th>
<th>Limits and units (2)</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetane number(4)</td>
<td>minimum 45(7)maximum 50</td>
<td>ISO 5165</td>
</tr>
<tr>
<td>Density at 15 °C</td>
<td>minimum 835 kg/m³ maximum 845 kg/m³(10)</td>
<td>ISO 3675, ASTM D 4052</td>
</tr>
<tr>
<td>Distillation (3) - 95 % point</td>
<td>Maximum 370 °C</td>
<td>ISO 3405</td>
</tr>
<tr>
<td>Viscosity at 40 °C</td>
<td>Minimum 2.5 mm²/s Maximum 3.5 mm²/s</td>
<td>ISO 3104</td>
</tr>
<tr>
<td>Sulphur content</td>
<td>Minimum 0.1% mass (9) Maximum 0.2% mass (8)</td>
<td>ISO 8754, EN 24260</td>
</tr>
<tr>
<td>Flash point</td>
<td>Minimum 55°C</td>
<td>ISO 2719</td>
</tr>
<tr>
<td>CFPP</td>
<td>Minimum - Maximum + 5°C</td>
<td>EN 116</td>
</tr>
<tr>
<td>Copper corrosion</td>
<td>Maximum 1</td>
<td>ISO 2160</td>
</tr>
<tr>
<td>Conradson carbon residue (10% DR)</td>
<td>Maximum 0.3 % mass</td>
<td>ISO 10370</td>
</tr>
<tr>
<td>Ash content</td>
<td>Maximum 0.01% mass</td>
<td>ASTM D 482 (12)</td>
</tr>
<tr>
<td>Water content</td>
<td>Maximum 0.05% mass</td>
<td>ASTM D 95, D 1744</td>
</tr>
<tr>
<td>Neutralization(strong acid) number</td>
<td>Minimum 0.20 mg KOH/g</td>
<td></td>
</tr>
<tr>
<td>Oxidation stability (5)</td>
<td>Maximum 2.5 mg/100 ml</td>
<td>ASTM D 2274</td>
</tr>
<tr>
<td>Additives (6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note (1): If it is required to calculate thermal efficiency of an engine or vehicle, the calorific value of the fuel can be calculated from:

\[
\text{Specific energy (calorific value) (net) MJ/kg} = \frac{(46.423 - 8.792 \times d^2 + 3.17 \times d) \times (1 - (x + y + s)) + 9.42 \times s - 2.499 \times x}{d} = \frac{(46.423 - 8.792 \times d^2 + 3.17 \times d) \times (1 - (x + y + s)) + 9.42 \times s - 2.499 \times x}{d}
\]

where:
- \(d\) = is the density at 288 K (15 °C)
- \(x\) = is the proportion by mass of water (%/100)
- \(y\) = is the proportion by mass of ash (%/100)
- \(s\) = is the proportion by mass of sulphur (%/100).

Note (2): The values quoted in the specification are 'true values'. In establishment of their limit values the terms of ASTMD 3244 'Defining a basis for petroleum produce quality disputes' have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility).
Notwithstanding this measure, which is necessary for statistical reasons, the manufacturer of fuel should nevertheless aim at a zero value where the stipulated maximum value is 2R and the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify the question as to whether a fuel meets the requirements of the specifications, the terms of ASTM D 3244 should be applied.

Note (3): The figures quoted show the evaporated quantities (percentage recovered + percentage loss).

Note (4): The range of cetane is not in accordance with the requirement of a minimum range of 4R. However, in cases of dispute between fuel supplier and fuel user, the terms in ASTM D 3244 can be used to resolve such disputes provided replicate measurements, of sufficient number to achieve the necessary precision, are made in preference to single determinations.

Note (5): Even though oxidation stability is controlled, it is likely that shelf life will be limited. Advice should be sought from the supplier as to storage conditions and life.

Note (6): This fuel should be based straight run and cracked hydrocarbon distillate components only; desulphurization is allowed. It must not contain any metallic additives or cetane improver additives.

Note (7): Lower values are permitted, in which case the cetane number of the reference fuel used is to be reported.

Note (8): Higher values are permitted, in which case the sulphur content of the reference fuel used is to be reported.

Note (9): To be kept under constant review in the light of trends in the markets. For the purpose of the initial approval of an engine with no exhaust gas after treatment on request of the applicant a 0.050 % mass sulphur minimum is permissible, in which case the measured particulate level must be corrected upward to the average value that is nominally specified for fuel sulphur content (0.150 % mass) per the equation below:

$$PT_{adj} = PT + [SFC \times 0.0917 \times (NSLF - FSF)]$$

where:

- PT_{adj} = adjusted PT value (g/kWh)
- PT = measured weighted specific emission value for particulate emission (g/kWh)
- SFC = weighted specific fuel consumption (g/kWh) calculated according to the formula as below
- $NSLF$ = average of the nominal specification of sulphur content mass fraction (i.e. 0.15 %/100)
- FSF = fuel sulphur content mass fraction (%/100)
Equation for the calculation of the weighted specific fuel consumption:

\[
SFC = \frac{\sum_{i=1}^{n} G_{FUEL,i} \cdot WF_i}{\sum_{i=1}^{n} P_i \cdot WF_i}
\]

where:

\[P_1 = P_{m,1} + P_{AE,1}\]

For the purpose of conformity of production assessments in accordance with paragraph 6. the requirements must be met using reference fuel with a sulphur content which complies with the minimum/maximum level of 0.1/0.2 per cent mass.

Note (10): Higher values are permitted up to 855 kg/m³, in which case the density of the reference fuel used is to be reported. For the purpose of conformity of production assessments in accordance with paragraph 6, the requirements must be met using reference fuel which complies with the minimum/maximum level of 835/845 kg/m³.

Note (11): All fuel characteristics and limit values are to be kept under review in light of trends in the markets.

Note (12): To be replaced by EN/ISO 6245 with effect of the date of implementation.