A unified approach to the assessment of both identification and attribution risks

Duncan Smith and Mark Elliot

University of Manchester
Introduction

In statistical disclosure control (SDC) we are generally concerned with identification risk or attribution risk.

Identification
- Associating a target with a single record.

Attribution
- Associating a target with a sufficiently detailed attribute value.
Disclosure inevitably involves some form of linkage
Classical Record Linkage

We have a set of all possible matches

\[A \times B = \{ (a, b) ; a \in A, b \in B \} \]

which can be partitioned into sets of matched and unmatched pairs

\[M = \{ (a, b) ; a = b, a \in A, b \in B \} \]

\[U = \{ (a, b) ; a \neq b, a \in A, b \in B \} \]

and the goal of record linkage is to allocate each possible match to either \(M \) or \(U \)
Fellegi-Sunter

- If the data are aligned so that each index corresponds to the same variable in A or B. Then, Fellegi-Sunter assumes that the posterior odds can be factorized as:

$$
\frac{Pr((a, b) \in M | (a, b))}{Pr((a, b) \in U | (a, b))} = \left(\prod_{i=1}^{n} \frac{Pr((a_i, b_i) | (a, b) \in M)}{Pr((a_i, b_i) | (a, b) \in U)} \right) \frac{Pr((a, b) \in M)}{Pr((a, b) \in U)}
$$

where comparisons on the key variables are for equality
Extended Latent Model

Consider an extended latent model

\[
\frac{Pr((a, b) \in M | (a, b))}{Pr((a, b) \in U | (a, b))} = \frac{Pr((a, b) | (a, b) \in M)}{Pr((a, b) | (a, b) \in U)} \times \\
\left(\prod_{i=1}^{n} \frac{Pr((a_i, b_i) | (a, b) \in M)}{Pr((a_i, b_i) | (a, b) \in U)} \right) \frac{Pr((a, b) \in M)}{Pr((a, b) \in U)}
\]

where the additional Bayes factor concerns the values of variables rather than the binary comparison of value pairs.
Given a full probability model \mathcal{M},

We can directly generate

$$Pr\left((a,b)|(a,b) \in M\right)$$

We can also generate

$$Pr\left((a,b)|(a,b) \in U\right)$$

(although there are reasons why we might use a distinct model)
The log likelihood function is,

\[
\ln(f(x|\Phi, \Phi_m, \Phi_u)) = \sum_{j=1}^{N} g_j \left(\sum_{i=1}^{n} \ln(m_i^{\gamma_i}(1-m_i)^{1-\gamma_i}), \sum_{i=1}^{n} \ln(u_i^{\gamma_i}(1-u_i)^{1-\gamma_i}) \right)^T + \\
\sum_{j=1}^{N} g_j \left(\ln(p), \ln(1-p) \right)^T + \\
\sum_{j=1}^{N} g_j \left(\ln(Pr(\delta^j|\Phi_m)), \ln(Pr(\delta^j|\Phi_u)) \right)^T
\]

where \(\Phi=(m,u,p) \) and \(\Phi_m \) and \(\Phi_u \) are the parameter vectors associated with the models for the numerator and denominator terms of the additional Bayes factor.

Expectation Maximization

The log likelihood function is,
In principle we can find the parameter values that maximize this function via Expectation Maximization (Jaro, 1989)

Pragmatic approach

1. Perform classical linkage (using EM)
2. Estimate full probability model \mathcal{M} from linked data
3. Repeat EM linkage with fixed $\Phi_m = \Phi_u$
The model \mathcal{M} can be iteratively re-fitted

- It can be difficult to avoid over-fitting
- Maximum a Posteriori (MAP) estimation can help

Additional training data can be used to improve estimation of \mathcal{M}
Disclosure control

Identification risk \rightarrow match probabilities

Attribution risk \rightarrow match probabilities and / or M

Use precision recall curves

\[
\text{Precision} = \frac{tp}{tp + fp}
\]

\[
\text{Recall} = \frac{tp}{tp + fn}
\]
Experiment using data sampled from the insurance network (http://www.bnlearn.com/bnrepository/#insurance)

Data partitioned and sub-sampled to generate datasets A and B (with known match statuses)

Perturbations applied to data in B to simulate typographical and coding errors
For Fellegi-Sunter 69.2% of the most probable matches are matches

For all other strategies 100% of the most probable matches are matches

Fellegi-Sunter underestimates the identification risk from an intruder using the extended latent model
Without known match statuses we cannot generate precision recall curves

We can use the match probabilities as risk measures
Plot of cumulative match probabilities against expected cumulative matches – record pairs ordered from most probable matches to least probable matches
For Fellegi-Sunter match probabilities are significantly underestimated (69.2% matches versus estimate of 0.487 for most probable matches)

All other strategies also underestimate match probabilities, but to a lesser degree than FS and less so for higher probability matches

Fellegi-Sunter underestimates the identification risk from an intruder using the standard latent model
Attribution risk depends on the posterior beliefs that can be generated for sensitive attribute values

- Prior versus posterior
- Differential privacy

Posterior can be generated via aggregation over match probabilities, or via the fitted model M
In terms of the Jensen-Shannon divergence \mathcal{M} provides a better estimate of the joint distribution.

<table>
<thead>
<tr>
<th></th>
<th>Fellegi Sunter</th>
<th>Extended EM</th>
<th>Extended EM +</th>
<th>Generating process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregation over match probs</td>
<td>0.573</td>
<td>0.546</td>
<td>0.328</td>
<td>0.508</td>
</tr>
<tr>
<td>\mathcal{M}</td>
<td>N/A</td>
<td>0.333</td>
<td>0.199</td>
<td>0.113</td>
</tr>
</tbody>
</table>
Summary

The extended latent model approach generates match probabilities and an estimate of the joint distribution

Match probabilities → identification risk

The joint distribution → attribution risk

Both match probabilities and the estimated joint distribution are better than when using Fellegi-Sunter
Additional slides that might help in answering questions
Let x be the complete data vector equal to $\langle y, g \rangle$, where $g_j = (1,0)$ iff the jth record pair $r_j \in M$ and $g_j = (0,1)$ iff $r_j \in U$.

Let the configuration of the evidence on the values of the variables for the jth record pair be denoted δ_j.
\[
p = \frac{|M|}{|M \cup U|}
\]

\[
Pr(\gamma^j | M) = \prod_{i=1}^{n} m_i^{\gamma_i^j} (1 - m_i)^{1 - \gamma_i^j}
\]

\[
Pr(\gamma^j | U) = \prod_{i=1}^{n} u_i^{\gamma_i^j} (1 - u_i)^{1 - \gamma_i^j}
\]
Estimation

- Let $\gamma^j_i = 0$ if attribute i differs for the jth record pair r_j, and $\gamma^j_i = 1$ if attribute i matches for the jth record pair r_j.

$$m_i = Pr(\gamma^j_i = 1 | r_j \in M)$$

$$u_i = Pr(\gamma^j_i = 1 | r_j \in U)$$

$$p = \frac{|M|}{|M \cup U|}$$