What Shall we do

With the Ratios?

Sarah GIESSING,
Federal Statistical Office of Germany
Division Mathematical Statistical Methods
Recall: Consistent post-tabular multiplicative noise method (Giessing, 2012)

- Create „seed variable“ in the micro data
- Compute consistent univariate random numbers (Seed) at the table cell level
- Apply consistent multiplicative noise (using Seed) at the table cell level
- Round noisy data (rounding interval ≈ confidence interval)

= Consistency
= Transparency
= Safety
Recall: Seed based multiplicative noise at the table cell level

- For each cell/variable Y do...
 - Determine deviation sense d (using seed)
 - Check primary sensitivity (f.i. by $p\%$-rule)
 - $\mu=2p$; for sensitive cells
 - $\mu=0$; for non-sensitive cells
Recall: Seed based multiplicative noise at the table cell level

- For each cell/variable Y do...
 - Determine deviation sense d (using seed)
 - Check primary sensitivity (f.i. by $p\%$-rule)
 - $\mu=2p$; for sensitive cells
 - $\mu=0$; for non-sensitive cells
 - Draw z from $N(0, \sigma)$ distribution (using seed; $\sigma \approx p/k$)
 - Multiply largest contribution y_1 by noise
 - $y_{1\text{post}} := y_1 (1+d (\mu+\text{abs}(z)))$
Recall: Seed based multiplicative noise at the table cell level

- For each cell/variable Y do...
 - Determine deviation sense d (using seed)
 - Check primary sensitivity (f.i. by p%-rule)
 - $\mu=2p$; for sensitive cells
 - $\mu=0$; for non-sensitive cells
 - Draw z from $N(0, \sigma)$ distribution (using seed; $\sigma \approx p/k$)
 - Multiply largest contribution y_1 by noise
 - $y_{1,post} =: y_1 (1+d (\mu+\text{abs}(z)))$
 - Exchange true largest contribution by perturbed largest contribution
 - $Y_{post} = Y_{orig} - y_1 + y_{1,post}$
Recall: Seed based multiplicative noise at the table cell level

- For each cell/variable Y do...
 - Determine deviation sense d (using seed)
 - Check primary sensitivity (f.i. by p%-rule)
 - $\mu = 2p$; for sensitive cells
 - $\mu = 0$; for non-sensitive cells
 - Draw z from $N(0, \sigma)$ distribution (using seed; $\sigma \approx p/k$)
 - Multiply largest contribution y_1 by noise
 - $y_1^{post} =: y_1 \cdot (1 + d(\mu + \text{abs}(z)))$
 - Exchange true largest contribution by perturbed largest contribution
 - $Y^{post} = Y^{orig} - y_1 + y_1^{post}$
 - Release Y^{post} and its approximate (!) ζ_γ-confidence interval
 - $Y^{post} \pm y_1(\mu + \sigma \zeta_\gamma)$
What happens to ratios?

Example: Ratio Y/X from true data vs. Ratio Y^{post} / X^{post} from perturbed data

Assume: $X = 1000, x_1 = 300, z_y = z_x = \sigma = 0.05, d_y = -1$
What happens to ratios?

Example: Ratio Y/X from true data vs. Ratio Y^{post} / X^{post} from perturbed data

Assume: $X = 1000, x_1 = 300, z_y = z_x = \sigma = 0.05, d_y = -1$

<table>
<thead>
<tr>
<th>Y</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>200</td>
<td>70</td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
</tr>
</tbody>
</table>
What happens to ratios?

Example: Ratio Y/X from true data vs. Ratio Y_{post}/X_{post} from perturbed data

Assume: $X = 1000$, $x_1 = 300$, $z_y = z_x = \sigma = 0.05$, $d_y = -1$

<table>
<thead>
<tr>
<th>Y</th>
<th>y_1</th>
<th>Y_{post}</th>
<th>lb_y</th>
<th>ub_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7</td>
<td>19.65</td>
<td>19.30</td>
<td>20</td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>196.5</td>
<td>193.00</td>
<td>200</td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
<td>1965</td>
<td>1930.00</td>
<td>2000</td>
</tr>
</tbody>
</table>

$\xi_y = 1$
What happens to ratios?

Example: Ratio Y/X from true data vs. Ratio Y_{post} / X_{post} from perturbed data

Assume: $X = 1000$, $x_1 = 300$, $z_y = z_x = \sigma = 0.05$, $d_y = -1$

<table>
<thead>
<tr>
<th>Y</th>
<th>y_1</th>
<th>Y_{post}</th>
<th>lb_y</th>
<th>ub_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7</td>
<td>19.65</td>
<td>19.30</td>
<td>20</td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>196.5</td>
<td>193.00</td>
<td>200</td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
<td>1965</td>
<td>1930.00</td>
<td>2000</td>
</tr>
</tbody>
</table>

$d_x = -1$

$d_x = +1$
What happens to ratios?

Example:

Ratio \(Y/X \) from true data vs.

Ratio \(Y^{post} / X^{post} \) from perturbed data

Assume: \(X = 1000, \ x_1 = 300, \ z_y = z_x = \sigma = 0.05, \ d_y = -1 \)

<table>
<thead>
<tr>
<th>(Y)</th>
<th>(y_1)</th>
<th>(Y^{post})</th>
<th>(\xi_y = 1)</th>
<th>(\xi_y = 1)</th>
<th>(d_x = -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7</td>
<td>19.65</td>
<td>lb(_y) 19.30</td>
<td>ub(_y) 20</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>196.5</td>
<td>lb(_y) 193.00</td>
<td>ub(_y) 200</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
<td>1965</td>
<td>lb(_y) 1930.00</td>
<td>ub(_y) 2000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(X^{post})</th>
<th>(\xi_y = 1)</th>
<th>(\xi_y = 1)</th>
<th>(d_x = +1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb(_x) 985</td>
<td>wh 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ub(_x) 985</td>
<td>wh 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lb(_x) 1015</td>
<td>wh 1030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ub(_x) 1015</td>
<td>wh 1030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lb(_x) 1015</td>
<td>wh 1030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ub(_x) 1015</td>
<td>wh 1030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What happens to ratios?

Example: Ratio Y/X from true data vs. Ratio Y^{post} / X^{post} from perturbed data

Assume: $X = 1000$, $x_1 = 300$, $z_y = z_x = \sigma = 0.05$, $d_y = -1$

<table>
<thead>
<tr>
<th>Y</th>
<th>y_1</th>
<th>Y/X</th>
<th>Y^{post}</th>
<th>$\xi_y = 1$</th>
<th>X^{post}</th>
<th>$\xi_y = 1$</th>
<th>$d_x = -1$</th>
<th>$\xi_y = 1$</th>
<th>$d_x = +1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7</td>
<td>0.02</td>
<td>19.65</td>
<td>19.30</td>
<td>985</td>
<td>970</td>
<td>1999</td>
<td>19.93</td>
<td>19.93</td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>0.2</td>
<td>196.5</td>
<td>193.00</td>
<td>985</td>
<td>970</td>
<td>19.93</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
<td>2</td>
<td>1965</td>
<td>1930.00</td>
<td>985</td>
<td>970</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

[Table with additional columns and data for Y^{post} and X^{post} with $d_x = -1$ and $d_x = +1$]
What happens to ratios?

Example: Ratio Y/X from true data vs. Ratio $Y_{\text{post}} / X_{\text{post}}$ from perturbed data

Assume: $X = 1000$, $x_1 = 300$, $z_Y = z_X = \sigma = 0.05$, $d_Y = -1$

<table>
<thead>
<tr>
<th>Y</th>
<th>y_1</th>
<th>Y/X</th>
<th>Y_{post}</th>
<th>$\xi_Y = 1$</th>
<th>$Y_{\text{post}}/X_{\text{post}}$</th>
<th>$\xi_Y = 1$</th>
<th>$d_x=-1$</th>
<th>ul_Y</th>
<th>$lb_X - ub_X$</th>
<th>ub_Y</th>
<th>$lb_Y - ub_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7</td>
<td>0.02</td>
<td>19.65</td>
<td>19.30-20</td>
<td>0.0199</td>
<td>193.00-2000</td>
<td>19.95</td>
<td>0.0013</td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>0.2</td>
<td>196.5</td>
<td>193.00-200</td>
<td>0.1995</td>
<td>1930.00-2000</td>
<td>1.99</td>
<td>0.0132</td>
<td></td>
<td>0.0130</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
<td>2</td>
<td>1965</td>
<td>1930.00-2000</td>
<td>1.936</td>
<td>1930.00-2000</td>
<td>1.936</td>
<td>0.1262</td>
<td></td>
<td>0.1260</td>
<td></td>
</tr>
</tbody>
</table>
Can we do better?

\[Y/X = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} = \hat{\beta}, \text{ where} \]

- \(\hat{\beta} \): OLS estimate for \(\beta \) in \(\sum_{i=1}^{n} (y_i - \beta x_i) = 0 \), i.e.

- \(\hat{\beta} \) solution to \(H(\beta) = 0 \), where

\[H(\beta) = \sum_{i=1}^{n} (y_i - E(y_i|x_i)) \]
Can we do better?

\[Y/X = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} = \hat{\beta}, \text{ where} \]

- \(\hat{\beta} \): OLS estimate for \(\beta \) in \(\sum_{i=1}^{n} (y_i - \beta x_i) = 0 \), i.e.
 - \(\hat{\beta} \) solution to \(H(\beta) = 0 \), where
 - \(H(\beta) = \sum_{i=1}^{n} (y_i - E(y_i|x_i)) \)
 - \(= \beta x_i \)
Can we do better?

- (Chipperfield and Yu, 2011):
 - Instead of solving $H(\beta) = 0$:
 - **Solve** $H(\beta) = E^*$ and release the solution $\hat{\beta}^*$ where

 $$E^* = u \cdot e = u \cdot \max_i |y_i - \beta x_i|$$

- Estimate $\hat{\beta} = Y/X$. Then
 - $H(\beta) = E^*$ (i.e. $\sum_{i=1}^{n} \{y_i - \beta x_i \} = E^*$) yields solution $\hat{\beta}^*$:

 $$\hat{\beta}^* = \frac{\sum_{i=1}^{n} y_i - u \cdot e}{\sum_{i=1}^{n} x_i} = \frac{Y}{X} - \frac{u \cdot e}{X} = \hat{\beta} - u \frac{e}{X}$$

- Draw noise u from $N(0, \sigma_r)$
- Release $\hat{\beta}^*$ and its approximate ζ_γ–confidence interval
 - $\hat{\beta}^* \pm \sigma_r \zeta_\gamma \frac{e}{X}$
We can do better!

Example: Ratio Y/X from true data vs. Ratio Y_{post}/X_{post} from perturbed data

Assume: $X = 1000$, $x_1 = 300$, $z_y = z_x = \sigma = \sigma_r = 0.05$, $d_y = -1$, $u = 1*0.05=0.05$

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>y_1</th>
<th>Y/X</th>
<th>Y_{post}</th>
<th>$\xi_y = 1$</th>
<th>X_{post}</th>
<th>$\xi_y = 1$</th>
<th>$d_x = -1$</th>
<th>Y_{post}/X_{post}</th>
<th>$\frac{lb_y}{ub_y} - \frac{lb_y}{ub_y}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7</td>
<td>0.02</td>
<td>19.65</td>
<td>19.30</td>
<td>20</td>
<td>985</td>
<td>970</td>
<td>1000</td>
<td>0.0199</td>
<td>0.0013</td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>0.2</td>
<td>196.5</td>
<td>193.00</td>
<td>200</td>
<td>985</td>
<td>970</td>
<td>1000</td>
<td>0.1995</td>
<td>0.0132</td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
<td>2</td>
<td>1965</td>
<td>1930.00</td>
<td>2000</td>
<td>985</td>
<td>970</td>
<td>1000</td>
<td>1.99</td>
<td>0.1319</td>
</tr>
</tbody>
</table>

\[
\hat{\beta}^* = 2\sigma_r \frac{e}{x} = 0.019850\quad 0.0003
\]

© Federal Statistical Office of Germany, Division Mathematical Statistical Methods
We can do better!

Example: Ratio Y/X from true data vs. Ratio Y^{post} / X^{post} from perturbed data

Assume: $X = 1000$, $x_1 = 300$, $z_y = z_x = \sigma = \sigma_r = 0.05$, $d_y = -1$, $u = 1\times0.05 = 0.05$

<table>
<thead>
<tr>
<th>Y</th>
<th>y_1</th>
<th>Y/X</th>
<th>Y^{post}</th>
<th>$\xi_y = 1$</th>
<th>$\xi_y = 1$</th>
<th>$d_x = -1$</th>
<th>$\frac{ub_Y}{lb_X} - \frac{lb_Y}{ub_X}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7</td>
<td>0.02</td>
<td>19.65</td>
<td>19.30</td>
<td>20</td>
<td>0.0199</td>
<td>0.0013</td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>0.2</td>
<td>196.5</td>
<td>193.00</td>
<td>200</td>
<td>0.1995</td>
<td>0.0132</td>
</tr>
<tr>
<td>2000</td>
<td>700</td>
<td>2</td>
<td>1965</td>
<td>1930.00</td>
<td>2000</td>
<td>1.99</td>
<td>0.1319</td>
</tr>
</tbody>
</table>

$\hat{\beta}^* = \frac{e}{2\sigma_r x}$

e

3

30

300
Summary: Seed based multiplicative noise for a ratio Y/X

For each cell/ratio Y/X where X and Y are non-sensitive do…

- Determine deviation sense d (using seed)
- Draw u from $\mathcal{N}(0, \sigma_r)$ distribution (using seed; suitable σ_r)
Summary: Seed based multiplicative noise for a ratio \(Y/X \)

For each cell/ratio \(Y/X \) where \(X \) and \(Y \) are non-sensitive do…

- Determine deviation sense \(d \) (using seed)
- Draw \(u \) from \(N(0, \sigma_r) \) distribution (using seed; suitable \(\sigma_r \))
- Identify most influential observation \(e = \max \left\{ \left| y_i - \frac{Y}{X} x_i \right| \right\} \)
- Compute perturbed ratio:
 - \(\hat{\beta}^* = \frac{Y}{X} - u \frac{e}{X} \)
Summary: Seed based multiplicative noise for a ratio \(Y/X \)

For each cell/ratio \(Y/X \) where \(X \) and \(Y \) are non-sensitive do...

- Determine deviation sense \(d \) (using seed)
- Draw \(u \) from \(\mathcal{N}(0, \sigma_r) \) distribution (using seed; suitable \(\sigma_r \))
- Identify most influential observation \(e = \max_i \left| y_i - \frac{Y}{X} x_i \right| \)
- Compute perturbed ratio:
 \[\beta^* = \frac{Y}{X} - u \frac{e}{X} \]
- Compute width of the \(\zeta_\gamma \)-confidence interval \[2\sigma_r \xi_{\gamma} \frac{e}{X} \]
- Compute rounding basis \(B \), considering this width and the desired precision of the ratio
- Release the estimate \(\beta^* \) after rounding
Rounding step

Recall: Rounding for Y^{post}

- Calculate rounding basis B:
 - $B = 10 \times \text{Round}(\log_{10}(2y_1(\mu + \sigma \zeta \gamma)))$
- Round Y^{post} to adjacent multiple of B

Example:
- $B = 10 \times \text{Round}(\log_{10}(14 \times 0.05)) = 1$
- Round $Y^{post} = 19.65$ to 20
Rounding step for perturbed ratio

Round $\hat{\beta}^*$, considering desired precision d:

- Calculate transformed „confidence interval“ rounding basis B:

 \[B = 10^{\text{round} \left(\log_{10} \left(2\sigma_r e^{10^d} \right) \right)} \]

- Transform estimate: $10^d \hat{\beta}^*$

- Round transformed estimate to adjacent multiple of B and divide by 10^d

- Example:

 \[B = 10^{\text{round} \left(\log_{10} \left(2 \cdot 0.05 \cdot \frac{3}{1000} \cdot 10^4 \right) \right)} = 1 \]

 - Round $10^d \hat{\beta}^*$ = 198.5 to 199
 - Backtransformation: $199/10^4 = 0.199$

- For the data of the example:

<table>
<thead>
<tr>
<th>$\hat{\beta}^*$</th>
<th>d</th>
<th>$10^d \hat{\beta}^*$</th>
<th>round($\hat{\beta}^*$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01985</td>
<td>4</td>
<td>198.5</td>
<td>0.0199</td>
</tr>
<tr>
<td>0.19850</td>
<td>4</td>
<td>1985</td>
<td>0.199*</td>
</tr>
<tr>
<td>1.98500</td>
<td>2</td>
<td>19850</td>
<td>1.99</td>
</tr>
</tbody>
</table>
Secondary Disclosure Risk Issues

Users/Intruders approximately know those intervals:

I. \(\hat{\beta}^* - \sigma_r \xi_y \frac{e}{X} \leq \frac{Y}{X} \leq \hat{\beta}^* + \sigma_r \xi_y \frac{e}{X} \)

II. \(X^* - \sigma \xi_y x_1 \leq X \leq X^* + \sigma \xi_y x_1 \)

III. \(Y^* - \sigma \xi_y y_1 \leq Y \leq Y^* + \sigma \xi_y y_1 \)

They might

- Use II to calculate new interval for true \(Y \) from I
- Use III to calculate new interval for true \(X \) from I

Therefore: we should show that it is

- possible to choose \(\sigma_r \) such that the new intervals for \(Y \) and \(X \) are (very likely to be) at least as wide as the intervals II and III

Has been proven in the paper for non-sensitive \((X,Y)\)
Conclusion, Future Work

In the context of a flexible table server relying on post tabular stochastic noise as SDC method:

- Noise variance of ratios can be reduced when the server offers perturbed ratio data (instead of calculating ratios from the perturbed enumerator and denominator data).
- Future work to address the special case where X is the number of observations, i.e. the case
 - $Y/X = \text{mean}(Y)$
Thanks for your attention