Limitations and impact of hedonic adjustment for the Swiss rent index
Contents

1. Introduction
2. Hedonic adjustment
3. Impact of adjustment
4. Breakdown of adjustment
5. Conclusions
Introduction

Rents for housing:

- a major part of the CPI basket
- a higher increase as the overall CPI
- a special market
- a major issue: quality adjustment
Annual change in rents, CPI and mortgage rate
Quality adjustment methods for rents

Statified ex post according to number of rooms and dwelling age.

-1993-2005 : further QA in accordance with renovations
The rent matrix

<table>
<thead>
<tr>
<th>Age/nb rooms</th>
<th>1 room</th>
<th>2 rooms</th>
<th>3 rooms</th>
<th>4 rooms</th>
<th>5 rooms</th>
<th>6 rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 years</td>
<td></td>
<td></td>
<td>950.-</td>
<td></td>
<td></td>
<td>2'800.-</td>
</tr>
<tr>
<td>6-10 years</td>
<td></td>
<td>850.-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-20 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 20 years</td>
<td></td>
<td></td>
<td>850.-</td>
<td>1'450.-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 3 rooms
 - 1970
 - 850.-

- 6 rooms
 - 2011
 - 2'800.-

- 2 rooms
 - 2005
 - 950.-

- 4 rooms
 - 1990
 - 1'450.-
The rent matrix with adjustment according to renovations

<table>
<thead>
<tr>
<th>Age/nb rooms</th>
<th>1 room</th>
<th>2 rooms</th>
<th>3 rooms</th>
<th>4 rooms</th>
<th>5 rooms</th>
<th>6 rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-20 years</td>
<td></td>
<td></td>
<td>1'200.-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More than 20 years</td>
<td>850.-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 rooms, 1995, 1'200.-

Partially renovated, calculated age
Quality adjustment methods for rents

Stratified ex post according to number of rooms and dwelling age.

-2006-2010: -------
-2011-now: hedonic model
Hedonic adjustment

Hedonic adjustment (2011-now) : main features

- hedonic repricing / hedonic QA
- rent structure survey 2003
- multiplicative model
- issue of location
Hedonic model

Hedonic repricing : principles

\[I_t^{adj} = I_t^{unadj} \cdot \frac{1}{I_t^{quality}} \]

With Jevons-index:

\[I_t^{unadj} = \frac{\prod_{i=1}^{nt}(P_{i,t})^{\frac{1}{nt}}}{\prod_{i=1}^{n_0}(P_{i,0})^{\frac{1}{n_0}}} \]

Adjustment factor

\[I_t^{quality} = \frac{\prod_{i=1}^{nt}(\hat{P}_{i,t})^{\frac{1}{nt}}}{\prod_{i=1}^{n_0}(\hat{P}_{i,0})^{\frac{1}{n_0}}} \]
Hedonic model

Why hedonic repricing?

• Hedonic regression not constrained to current/base period: 2003

• Database for regression <> Database for index calculation: MSE (90‘000 dwellings) + external suppliers (location)

• Close to standard QA approaches
Hedonic model

Multiplicative model (1)

1) Estimated model:

\[\ln(\hat{P}_i) = \hat{\alpha} + \hat{\beta}_1 X_{1,i} + \hat{\beta}_2 \ln(X_{2,i}) \]

=> Multiplicative relation:

\[\hat{P}_i = e^{\hat{\alpha}} \cdot e^{\hat{\beta}_1 X_{1,i}} \cdot X_{2,i}^{\hat{\beta}_2} = \text{cst} \cdot (1 + \text{fact1}_i \%) \cdot (1 + \text{fact2}_i \%) \]
Hedonic model

Multiplicative model (2)

2) Adjustment factor:

\[
I_{t,\text{quality}} = \frac{\Pi_{i=1}^{nt}(1 + \text{factor}1_{i,t} \%)^{\frac{1}{nt}}}{\Pi_{i=1}^{n0}(1 + \text{factor}1_{i,0} \%)^{\frac{1}{n0}}} \cdot \frac{\Pi_{i=1}^{nt}(1 + \text{factor}2_{i,t} \%)^{\frac{1}{nt}}}{\Pi_{i=1}^{n0}(1 + \text{factor}2_{i,0} \%)^{\frac{1}{n0}}}
\]
Hedonic model

Variables

<table>
<thead>
<tr>
<th>Type</th>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural (12 / 8D)</td>
<td>Age, room, storey, garage, penthouse, duplex</td>
<td></td>
</tr>
<tr>
<td>Micro-location (13 / 10D)</td>
<td>Distance from the lake, lake view, mountain view, gradient, exposure, noise</td>
<td></td>
</tr>
<tr>
<td>Macro-location (33 / 30D)</td>
<td>Potential accessibility, fiscal capacity, tax rate, canton, major city</td>
<td></td>
</tr>
</tbody>
</table>

\[
\ln(\hat{y}_i) = \alpha + \sum_{j=1}^{12} \beta_j X_{ij}^{\text{structure}} + \sum_{k=1}^{47} \rho_k X_{ik}^{\text{location}}
\]

\[
\hat{y}_i = \alpha + \sum_{j=1}^{12} \beta_j X_{ij}^{\text{structure}} + \text{Hectare value}_i
\]
Impact

Impact on the index

<table>
<thead>
<tr>
<th></th>
<th>Index AC</th>
<th>Total index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadj. change</td>
<td>+ 0.81%</td>
<td>+ 0.18%</td>
</tr>
<tr>
<td>Adj. change</td>
<td>+ 1.03%</td>
<td>+ 0.21%</td>
</tr>
<tr>
<td>Deviation</td>
<td>+ 0.21%</td>
<td>+ 0.03%</td>
</tr>
</tbody>
</table>
Impact

- Data points: 2011q1 to 2014q4
- Y-axis: Values from 0.97 to 1.015
- X-axis: Quarters from 2011q1 to 2014q4
- Chart title: Adjustment factor
- Sub-title: Adjustment factor (mean since 2011q1)
Swiss Confederation

Breakdown

Breakdown
Breakdown
Breakdown

![Bar chart showing breakdown of storey and storey (mean) from 2011q1 to 2014q1. The chart displays the price indices over time with a distinct visual representation for storey and a dotted line for the mean.](image-url)
Breakdown

![Bar chart showing breakdown of consumer price indices from 2011q1 to 2014q1. The chart indicates fluctuations in location and location (mean) indices over the specified periods.](image)
Conclusions

Impact depends on the entire construction of the index

Limited impact on the short term

No impact in the long run