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Summary  

Mortality rates differ across countries and years, and the country with the lowest 

mortality has historically tended to change over time. Following the classical Science 

paper by Oeppen and Vaupel (2002), a hypothetical mortality 'frontier' can be defined, 

representing the lowest set of mortality rates possible for each year. It is expected that 

change in this frontier reflects global technological and medical advances, which may 

display a more stable trend over time than the patterns in mortality improvement 

displayed by any particular country. This paper presents a method that aims to take 

advantage of this assumed stability for forecasting purposes. 

 

Adapting the model of Hilton et al. (2019), we set out a model that jointly estimates this 

frontier mortality as well mortality rates for individual countries. Generalised additive 

models are used to estimate a smooth set of baseline frontier mortality rates and 

mortality improvements, and country-level mortality is modelled as a set of smooth, 

positive deviations from this, forcing the mortality estimates for individual countries to 

lie above the frontier. 

 

This model is fitted to data for a selection of countries from the Human Mortality 

Database using Bayesian methods. The efficacy of the model in forecasting over a 10-

year horizon is compared to a similar model fitted to each country separately. 
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I. Introduction 

1. Modelling and forecasting mortality is a vital function for government bodies that produce 

official statistics. Population projections and life expectancy calculations depend on their 

production, and in turn these influence policy on public pensions, health spending, and 

planning. Official projections may gain from utilising data from across a range of countries 

(see, for example Raftery et al. (2013)), as this greater depth of mortality experience may 

reveal the long-term pattern in mortality more clearly than any single country alone. Best-

practice life expectancy, defined as lowest value of life expectancy globally, has shown 

sustained increases over many decades (Oeppen and Vaupel 2002), and furthermore national 

life expectancies in different states appear to be converging (Wilson 2001). The extent to 

which we can expect these trends to continue in the long term is subject to debate. However, 

as highlighted by Oeppen and Vaupel (2002), previous predicted limits to life expectancy have 

been surpassed not long after they were proposed. While individual countries may show 

acceleration and deceleration in their rate of decline, the behaviour of the mortality ‘frontier’ 

is suggested to be more regular. In contrast to the social, political and economic influences on 

mortality decline, the frontier is influenced to a greater extent by the pace of increase in 

medical knowledge and technological advances, which is assumed to be more consistent. As 

noted by Bijak (2004), Torri and Vaupel (2012) and M. D. Pascariu, Canudas-Romo, and 

Vaupel (2018), this regularity has utility in forecasting, to the extent that we expect advances 

in health behaviour and medical technology to keep pace with past experience. Furthermore, 

estimating the location and evolution of the global mortality frontier may help policy-makers 

understand where there are opportunities to improve mortality. This paper employs the 

Bayesian generalised additive mortality model of Hilton et al. (2019) to estimate frontier 

mortality rates and project them forward at the long run rate of decline, modelling individual 

country mortality schedules as deviations from this frontier experience. 

II. Model of Mortality 

2. There are various different approaches to the modelling of mortality, of which Booth and 

Tickle (2008) provides an extensive review. Mortality is the demographic component most 

amenable to forecasting; unlike migration and fertility, both the age pattern of the rates and 

the direction of change has remained steady over a very long time horizon. A few key 

approaches to mortality forecasting are highlighted in this section. One strand of the literature 

is based on the idea of reducing the dimensionality of the problem by identifying leading 

principle components of the matrix of log-mortality rates and using these for forecasting. The 

seminal paper in this area is Ronald D Lee and Carter (1992). Their method decomposes the 

centered log-mortality rates into a time index describing the overall rate of mortality decline 

and a vector of age-specific factors describing the rate of decline of each age-specific rate 

relative to this index, so that that log(𝑚𝑥𝑡) = 𝑎𝑥 + 𝑏𝑥𝑘𝑡. The vectors 𝐛 = (𝑏0, 𝑏1, … , 𝑏𝑋) 

and 𝐤𝐭 = (𝑘1, 𝑘2, … , 𝑘𝑇) correspond to the first principal component of the centred log-rate 

matrix, and can therefore be estimated using singular value decomposition. Since only the 

index κ_t varies over time, the forecasting problem is much simplified. Typically, simple time 

series models suffice for κ_t, and in particular the random walk with drift has been found to 

perform well. A wide range of extensions of the Lee-Carter model have been proposed, a 

testament to the simplicity and efficacy of the model (e.g. R D Lee and Tuljapurkar (1994), 

Booth et al. (2006), Li, Lee, and Gerland (2013)). R. J. Hyndman and Ullah (2007) provide 

an extension of the Lee-Carter model from within the functional data analysis framework, 

allowing for more than one principal component to be employed in forecasting, and for the 

smoothing of the age-profile of mortality decline. 

3. From a different perspective, Currie, Durban, and Eilers (2004) employ 2-dimensional 

penalised B-splines to capture log-mortality rates, allowing considerable flexibility in the 

shape of the mortality surface. Forecasting is possible through the interpretation of the 
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smoothing penalisation of basis function coefficients as a time series model, allowing basis 

function coefficients for new periods to be generated. Also employing penalised B-splines, 

Hilton et al. (2019) fit generalised additive models in order to capture smooth age, age-

specific improvement, and cohort components together with a period effect capturing 

deviations from the linear trend (for which roughness is deemed appropriate). Taking a more 

general view, A. J. G. Cairns et al. (2009) describe a family of models in which log-

mortality is considered as a sum of terms of age, period and cohort effects, possibly 

including interactions. This family includes the Lee-Carter model and the model of Currie, 

Durban, and Eilers (2004) as special cases. 

4. As well as attempting to model mortality directly, one can attempt to specify a model that 

describes how the mortality frontier evolves, and describe how far behind this frontier each 

individual country is. Bijak (2004) provide fertility and mortality forecasts for 27 European 

countries using a mortality model based on the assumption that frontier life expectancy 

increases linearly, and that individual countries converge exponentially toward the frontier 

with different rates of convergence for males and females. Similarly, Torri and Vaupel 

(2012) model both frontier life expectancy and the gap between such life expectancy and 

that of individual countries. The gap is modelled using a logarithm transform to ensure 

countries always remain below the frontier, and various time-series models are applied to the 

gap, including the discrete geometric Brownian motion and the discrete geometric mean-

reverting process. M. D. Pascariu, Canudas-Romo, and Vaupel (2018) present a ‘two-gap’ 

mortality model, which considers both the gap between the female frontier life expectancy 

and the equivalent value for any particular country, and the gap between female and male 

life expectancy in that country, allowing for coherence both between and within countries. 

M. P. Bergeron-Boucher et al. (2018) are concerned with the gap between male and female 

mortality, and provide a model which constructs a forecast of female mortality, and then 

separately forecast male-female mortality ratios. These papers provide ample evidence of the 

potential efficacy of thinking about mortality forecasting in terms of a mortality frontier. The 

model presented in this paper differs from these approaches in that it attempts to estimates a 

smooth frontier mortality profile at the level of age-specific rates, based on all available data, 

and jointly estimates positive deviations from this frontier in a Bayesian hierarchical 

framework. 

 

III. Model Specification 

5. The model presented in this paper employs Generalised Additive Models (GAMs) (Wood 

2006) to capture both the frontier mortality surface and deviations from it. GAMs model 

target quantities as sums of smooth functions of covariates, with identifying constraints 

ensuring such smooths are distinguishable. Hilton et al. (2019) describe a model for 

mortality forecasting using GAMs. The logarithm of mortality rates are considered as a 

smooth function of age and cohort, together with smooth age-specific improvement factors 

and non-smoothed period effects. Smooth terms are modelled using penalised B-splines 

(Wood 2006). The model proposed in this paper extends this approach to provide for the 

inclusion of a mortality frontier. For the sake of simplicity, cohort effects included in the 

model of Hilton et al. (2019) are jettisoned in order to simplify the development of the 

model, and an extension of the model could allow their re-inclusion. 

6. Starting from the likelihood, age-specific death counts 𝐷𝑥𝑡 are given a negative binomial 

distribution, with a parameter exp(𝜙) determining the degree of over-dispersion relative to 

the Poisson: 

𝐷𝑥𝑡 ∼ Negative Binomial(𝑚𝑥𝑡𝑅𝑥𝑡, exp(𝜙)). 
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7. The log mortality rate log(𝑚𝑥𝑡) is then modelled as a sum of frontier mortality term 𝑓(𝑥, 𝑡), 

a country specific term 𝑔+(𝑥, 𝑡, 𝑐) that is constrained to be positive (ensuring that all country 

rates lie above the frontier), and a period effect 𝑘𝑡𝑐. For the frontier term, smooth functions 

of age are used to capture the overall pattern of frontier log-mortality 𝑠𝜇(𝑥) and the age-

specific pattern of mortality improvement factors 𝑠𝛽(𝑥), assuming that frontier mortality 

declines linearly. The country-specific term is considered to be a product of a smooth 

positive term 𝑠𝛾
𝑐(𝑥) describing age-specific deviations from the frontier, and an additional 

term exp(ℎ(𝑥, 𝑡, 𝑐)) which describes changes in this deviation over time. The exponent in 

this factor ensures that the overall country specific term remains positive 

log(𝑚𝑥𝑡𝑐) = 𝑓(𝑥, 𝑡) + 𝑔+(𝑥, 𝑡, 𝑐) + 𝜅𝑡𝑐

𝑓(𝑥, 𝑡) = 𝑠𝜇(𝑥) + 𝑠𝛽(𝑥)𝑡

𝑔+(𝑥, 𝑡, 𝑐) = 𝑠𝛾
𝑐(𝑥)exp(ℎ(𝑥, 𝑡, 𝑐)).

 

8. The function ℎ(𝑥, 𝑡, 𝑐) describing changes at the level of individual countries can potentially 

take a number of different forms. As a starting point, we consider ℎ(𝑥, 𝑡, 𝑐) to comprise a 

single smooth age term interacting with time ℎ(𝑥, 𝑡, 𝑐) = 𝑠𝛿
𝑐(𝑥)𝑡. Thus, the term 𝑠𝛾

𝑐(𝑥) can 

be interpreted as the level of deviation from the frontier at time 𝑡 = 0, and the 𝑠𝛿
𝑐(𝑥) term 

controls the rate of decline or increase of this deviation. The pace of change with respect to 

time slows as the term 𝑔+(𝑥, 𝑡, 𝑐) tends to zero, so that country specific rates approach the 

frontier only asymptotically. However, this model assumes that particular age-specific 

mortality rates either converge to or diverge from the frontier for particular countries; the 

direction of change cannot reverse. The introduction of a quadratic term 𝑠𝜆
𝑐(𝑥)𝑡2 rectifies 

this problem, so that ℎ(𝑥, 𝑡, 𝑐) = 𝑠𝛿
𝑐(𝑥)𝑡 + 𝑠𝜆

𝑐(𝑥)𝑡2. 

9. More varied patterns of deviations from the frontier can be considered by allowing more 

flexibility in the specification of ℎ(). Any number of combinations of age, period and even 

cohort terms may be included, as long as these are sufficiently constrained so that the other 

terms in the model are identifiable. Two particular special cases may be important. Firstly, 

we might allow for variations in the pace and direction of mortality change by incorporating 

the bi-variate form of Lee and Carter (1992), so that ℎ(𝑥, 𝑡, 𝑐) = 𝑠𝛿
𝑐(𝑥)𝑘𝑡𝑐. In this case, we 

would no longer include the period term 𝜅𝑡𝑐, as its function would be subsumed by the new 

𝑘𝑡𝑐 term. The usual Lee-Carter constraints would be required to ensure identifiability. 

Secondly, an even greater degree of flexibility might be provided by including a two-

dimensional spline term ℎ(𝑥, 𝑡, 𝑐) = 𝑠𝜂
𝑐(𝑥, 𝑡), in the spirit of the model of Currie, Durban, 

and Eilers (2004). Again, constraints would be required for in order identify such effects. 

10. All smooth terms are modelled using penalised B-splines (Wood (2006)). The term 𝑠𝛾
𝑐(𝑥) is 

treated slightly differently however; its coefficients are constrained to be positive, ensuring 

that the smooth term as a whole is positive everywhere, as all elements of the basis function 

are positive. As with other terms, the coefficient matrix has a smoothness prior applied 

penalising first differences in the age direction (Currie, Durban, and Eilers 2004), but also 

double exponential random effect priors. The later prior pulls country-specific deviations 

toward zero, in effect ensuring that the frontier remains close to the lowest observed 

mortality rates at each age. 

11. The period effect 𝑘𝑡𝑐 is a country specific random walk capturing year-to-year random 

variation in mortality caused by factors such as flu and temperature variations. In order to 

ensure that the overall time-trends are captured in the other model parameters, the 𝜅 term is 

constrained so that it sums to zero, and contains no linear or quadratic components. The 

random walk prior is adjusted to account for these constraints in a similar way to Hilton et 

al. (2019). In the examples that follow, period effects of different countries are considered 

independent, although the prior correlation structure could be specified in greater detail, 

allowing different levels of correlation between countries, or accounting for geographical or 

social-cultural factors that might induce correlation between mortality rates across countries. 
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IV. Data and Estimation 

12. The Human Mortality Database (Human Mortality Database 2019) was used to obtain age-

specific death and exposure data for 19 developed countries with reasonably large 

populations and for which data is available for at least the period 1961 onward. Only female 

data are used in this instance; future work could plausibly consider modelling males jointly 

by extending the ‘double-gap’ life-expectancy model of M. D. Pascariu, Canudas-Romo, and 

Vaupel (2018) to a mortality rate context. Infant mortality and centenarians were excluded, 

although extending the model to incorporate these age groups should be possible. Data from 

1961-2006 is used to fit the three models: the linear and quadratic variants of the proposed 

model and comparator model where each country is fitted independently. Data from 2007-

2016 held back for purposes of assessment. 

13. The frontier and country-specific elements of the models were fitted jointly using the stan 

Bayesian modelling software (Stan Development Team 2019). Each model run consisted of 

four chains, each consisting of 8000 iterations, with the first half of each chain used to 

optimise the relevant sampling parameters and discarded, and additionally the remaining 

samples where thinned by a factor of two, to reduce memory usage. Diagnostic measures 

suggested that each chain had converged to the target distribution. 

V. Results 

14. In this section, model results are presented for the quadratic model variant. Starting with the 

frontier model, Figure 1 shows the posterior distribution of the frontier surface defined by 

𝑠𝜇(𝑥) + 𝑠𝛽(𝑥)𝑡 at selected years. These distribution are plotted together with corresponding 

empirical log rates for the 19 countries included in the estimation processes. Each country is 

displayed in a different colour, although distinguishing individual country’s observation is 

not important for interpretation of the chart. The frontier estimates lie below but close to the 

vast majority of observed rates. At younger ages, some observations lie beyond the frontier. 

This is to be expected, as the estimated frontier is supposed to represent the lower limit of 

the central rate 𝑚𝑥,𝑡, but it does not account for the additional negative binomial uncertainty 

in deaths. In other words, although the force of mortality will generally lie above the 

frontier, random variation in realised death counts could result in observed rates that lie 

below it. Thus, the empirical mortality frontier is distinct from the ‘true’ mortality frontier 

that we are trying to model. Younger ages are more likely to display this effect, because 

mortality is much lower at these ages, and so the effect of negative binomial uncertainty on 

observed log-rates is far greater. 

15. It should also be noted that unlike the country-specific deviations, the period effect for 

particular years 𝜅𝑡𝑐 may be negative, and in some cases this may result in modelled 

mortality rates that lie below the frontier. Given that the scale of the period effects is 

generally small relative to the deviations, this will only occur for countries that are already 

very close to the frontier, and is not deemed to be a significant shortcoming in the model 

specification. 

16. The final panel in Figure 1 is a forecast for 2016. Again observations for the majority of the 

age range appear consistent with our interpretation of the frontier, although it is possible that 

decline in the frontier for young adults aged 20-30 is slightly under-estimated by the model. 
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Figure 1: Posterior distribution of frontier mortality, selected years. Plotted data points 

represent all observations in a given year; colours denote countries. 

 

17. A key question is how effectively the model can fit observed data and predict future trends 

in mortality. For illustrative purposes, we display posterior distributions for particular age-

specific rates across time for England and Wales in Figure 2. Empirical rates are plotted as 

red dots, while the beginning of the forecast period is indicated by a black horizontal line. 

The posterior mean for each age-specific rate lies above frontier mortality boundary. Most 

empirical observations lie within the 90% credible interval, both over the fitting period and 

for the forecasts, indicating the model does a reasonable job at capturing our uncertainty 

about the data. There is some evidence that our forecasts are overly optimistic about the 

extent to which mortality for England and Wales will decline towards the frontier around age 

70; here the last few observations fall outside the predictive interval. 
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Figure 2: Posterior predictive distribution of log-mortality 

rates for selected ages, England and Wales 
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18. Of course, a more thorough examination of the model is needed to decide its efficacy. 

Extensive plots for all countries can be found in the supplemental material. It is evident that 

for the quadratic model in particular, some countries display unrealistic forecasts at 

particular ages; the cause and potential remedy to this issue is discussed in Section 6. For the 

purposes of formal assessment, root-mean squared error (RMSE) and empirical coverage 

(the proportion of observations falling within the posterior interval of a given probability) 

were calculated over the forecast period 2007-2016 for all countries. RMSE was calculated 

using the mean of the posterior rate for each forecast year and age as the relevant point 

estimates. One goal of the assessment is to provide evidence that including information 

about the frontier is useful for forecasting. To this end a series of models were fitted to each 

country independently which included only smooth age, age-specific improvement, and 

period terms: 

log(𝑚𝑥𝑡) = 𝑠𝜇(𝑥) + 𝑠𝛽(𝑥)𝑡 + 𝜅𝑡. 

19. Thus, we can compare the forecast performance of the model in which country forecasts are 

independent (labelled ‘Independent’ in subsequent plots) with variants of the frontier model 

we are proposing. Specifically, we investigate two different choices of the ℎ(𝑥, 𝑡, 𝑐) function 

determining the change in country mortality relative to the frontier: 

ℎ1(𝑥, 𝑡, 𝑐) =  𝑠𝛿(𝑥)𝑡

ℎ2(𝑥, 𝑡, 𝑐) =  𝑠𝛿(𝑥)𝑡 + 𝑠𝜆(𝑥)𝑡2.
 

20. These are referred to as the linear and quadratic models respectively. To give a clear idea of 

the whether these variants are doing better than the comparator independence model, Figure 

3 displays the difference between RMSE for the variants and the independence models for 

each country. If this value is negative (to the left of the axis at zero in the chart), it indicates 

that the variant model performs better. If it is positive, the reverse is true. The assessment 

reveals that for 13 of the 19 countries, the quadratic model has lower a RMSE over the 

forecast period than the independent model. For the linear model, the results are closer: it is 

preferred by this metric over the independence model in 11 of 19 cases. 

 

Figure 3: Difference between RMSE of frontier model variants 

and a similar model fitted independent to each country 

. 
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21. The accuracy of point estimates are not the only relevant area of assessment. Quantification 

of uncertainty in forecasts is important in managing longevity risk, and so the extent to 

which observations fall within forecast intervals is also important. Figure 4 provides the 

proportion of observations that fall within the central 90% predictive probability interval. 

Ideally, this value should approach 90%, indicating forecast uncertainty appears well 

calibrated. However, given that for each country we only observe one correlated set of rates 

(over the period 2006-2016), this proportion does not correspond exactly with the frequentist 

interpretation of coverage, which relies on independent replications of the same experiment. 

Therefore, we must not over-interpret the reported empirical coverage statistics. In general, 

the results are encouraging. A majority of all models have empirical coverages ranging 

between 80% and 95% for the 90% interval. The quadratic model has 5 observations with 

coverages below 80%, compared to 5 for the independent model and 7 for the linear variant. 

The USA, Denmark and Spain appear to have patterns of recent mortality decline which are 

difficult to capture for all models. The quadratic model appears to be the better performing 

model overall based on these metrics, although it appears to perform particularly badly for 

both RMSE and coverage in the case of the Netherlands. 

 

Figure 4: Proportion of observations falling within 90% predictive interval for the 

independent model, and linear and quadratic variants of the frontier model. 

 

VI. Conclusion 

22. This paper has set out a model of mortality that estimates the evolution of frontier mortality 

as a set of smooth rates, and then considers individual countries as deviations from this 

profile. Frontier mortality is constrained to lie below the modelled force of mortality for all 

individual countries, but the prior specification ensures that it remains close to best-

performing countries by penalising the magnitude of the individual country deviations. 

Estimates of frontier mortality and the extent of particular country deviations from this 

standard may provide useful benchmarking information to public bodies. The model was 

fitted jointly to 19 countries, and its performance in short-term forecasting is compared to a 

similar model without a frontier component in which each country was modelled 

independently. The frontier model was found to perform better in terms of the accuracy of its 

central forecasts than the independence model over a 10-year time horizon. These findings 
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suggest that a frontier model has potential for use in forecasting mortality for a large group 

of countries, perhaps particularly by multinational bodies with access to harmonised data 

from a variety of sources. 

23. Some limitations and areas for future investigation can be identified. Firstly, a longer time 

horizon may be required to accurate assess the usefulness of the model. Mortality forecasts 

are typically used to compute cohort life expectancies, which require considerably longer 

forecasts than have been provided here. Secondly, forecasts for females only were produced 

in the examples above. Extending the approach described to multiple sexes using a ‘double-

gap’ model, as employed by M. D. Pascariu, Canudas-Romo, and Vaupel (2018) for life 

expectancy, may have some utility. Thirdly, at present simple linear and quadratic terms 

were chosen to describe the evolution of country specific deviations from the frontier. These 

may not be the best choices for this element of the model. In particular, over longer time 

horizons, the quadratic model may predict unrealistic divergences from the frontier at some 

ages in countries where recent stagnation in mortality rates have been observed, leading in 

some cases to predicted increases in mortality. Section 3 set out two possible alternative 

models based on Ronald D Lee and Carter (1992) and Currie, Durban, and Eilers (2004). 

Specifying priors on the time-varying elements of these models that favour mean-reversion 

will help to ensure forecast means do not diverge from the frontier over the long-term. 

Finally, a comparison between frontier models and those that provide for convergence 

towards a mean trend might be investigated; it may be that such models produce similar 

conclusions, or that one or another is more efficacious. 
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