Future mortality in European countries, taking into account the impact of lifestyle epidemics

Fanny Janssen1,2, Shady El Gewily1, Anastasios Bardoutsos1

1Population Research Centre, University of Groningen
2Netherlands Interdisciplinary Demographic Institute
Importance of lifestyle factors

› In the EU, **smoking, alcohol and obesity** are the most important preventable risk factors (WHO 2009)

› Important determinants of mortality differences btwn countries and sexes (e.g. Janssen et al. 2007; Trias-Llimos et al. 2018; GBD 2015 Obesity Collaborators)

› Clear impact on trends in life expectancy, due to specific time-varying nature
Time-varying nature of lifestyle factors

- Smoking epidemic => strong wave pattern (prevalence; mortality); Northwestern European men (Lopez et al. 1994; Thun et al. 2012)
- Obesity epidemic => prevalence tripled since 1980 (WHO 2007); wave-shaped epidemic (Xu & Lam 2018); current signs of stagnation (Rokholm et al. 2010)
- Alcohol => adult men Eastern Europe; high and fluctuating mortality (Rehm et al. 2009); recent declines (Trias Llimós et al. 2018)
- Importance of the birth cohort dimension for describing and explaining past trends in smoking-, alcohol- and obesity-attributable mortality (e.g. Janssen & Kunst 2005, Trias-Llimós et al. 2017; Vidra et al. 2018).
Impact on life expectancy trends - smoking

Life expectancy with and without smoking, 1950-2014

Impact on life expectancy trends - ctned

“On average, life expectancy at birth (e_0) increased between 1975 and 2012 by 7.3 years for men and by 6.3 years for women across 26 European countries. Without obesity, the average increase in e_0 would have been 0.8 years higher for men and 0.3 years higher for women.” (Vidra et al. 2019 BMJ Open)

Alcohol contributed substantially to the increase in the East-West life expectancy gap in Europe (1975-2005) and the decline thereafter (Trias-Llimos et al. 2018 IJE)
Importance for mortality forecasting

› These changes in lifestyle-attributable mortality are important for mortality forecasting (e.g. Janssen et al. 2013; Bongaarts 2014).

› Mortality projection mostly by extrapolation (Booth & Tickle 2008; Stoeldraijer et al. 2013)
 • When past trends non-linear due to lifestyle factors: different historical period => different outcome (Janssen & Kunst 2007; Stoeldraijer 2019)
 • Unrealistic future differences btwn sexes and countries
 • No non-linearity in the future (no cohort dimension)
Life expectancy with and without smoking, the Netherlands, 1950-2014

Remaining life expectancy at age 80

- F_observed_allcause
- F_allcause_indiv
- F_ns+smoke_indiv
- M_observed_allcause
- M_allcause_indiv
- M_ns+smoke_indiv

Importance for mortality forecasting

- These changes in lifestyle-attributable mortality are important for mortality forecasting (e.g. Janssen et al. 2013; Bongaarts 2014).
- Mortality projection mostly by extrapolation (Booth & Tickle 2008; Stoeldraijer et al. 2013)
 - When past trends non-linear due to lifestyle factors: different historical period => different outcome (Janssen & Kunst 2007; Stoeldraijer 2019)
 - Unrealistic future differences btwn sexes and countries
 - No non-linearity in the future (no cohort dimension)
- Including the mortality experience in other populations (coherent) especially meaningful for non-lifestyle attributable mortality
Objective

› To project all-cause mortality in Europe taking into account the impact of the smoking, obesity and alcohol ‘epidemics’, and the mortality experience in other countries

WP => preliminary results for 6 countries
PPT => approach
Approach to mortality forecasting (I)

<table>
<thead>
<tr>
<th>Gradual mortality decline</th>
<th>Country and sex specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical improvements; socio-economic developments</td>
<td>Deviations / variations</td>
</tr>
<tr>
<td>Health-related lifestyle</td>
<td></td>
</tr>
</tbody>
</table>

Predict separately

- Other populations
- Epidemiological evidence
Approach to mortality forecasting (II)

Separate projection of smoking-, alcohol- and obesity-attributable mortality

Combined with

Coherent projection of non-lifestyle-attributable mortality

Based on: Janssen et al. (2013) Including the smoking epidemic in internationally coherent mortality projections. *Demography.*
Data

› All-cause mortality and exposure from HMD by sex and age, 1950-2016

› Population-level (cause-specific) mortality or prevalence data by age and sex
 • Smoking: Lung cancer mortality from 1950 onwards (WHO)
 • Obesity: Prevalence data from 1975 onwards (NCD Risk Factor Collaboration study 2017)
 • Alcohol: GBD rates + WHO cod info from 1990 onwards
Methods I

› Future smoking-, obesity-, and alcohol-attributable mortality fractions (20-100)(up to 2100) by novel methodology that incorporates the wave pattern of epidemics and the cohort dimension

› Future lifestyle attributable mortality by multiplicative approach

\[PAF_{1,i} = 1 - \prod_{i=1}^{n} (1 - PAF_i) \]
Methods II

- Coherent forecast of non-lifestyle-attributable mortality rates (Li & Lee 2005); 1990 onwards; ages 0-100.
- Li & Lee 2005 methodology

- Common = women in France, Spain, Italy.

- $k_t \Rightarrow RW$ with no drift (non-stationary).
Methods III

› **Combining:**

\[m(x, t)^{\text{allcause}} = m(x, t)^{\text{non-lifestyle}} \cdot \left(\frac{1}{1-LAMF(x,t)} \right) \]

(Janssen et al. 2013)

› **For ages 100+** => Kannisto model of old-age mortality (Thatcher et al. 1998)

› **Comparison with direct forecast of all-cause mortality** (individual LC and coherent Li-Lee) and with individual LC forecast of non-lifestyle-attributable mortality
Preliminary results
Comparison trends of all-cause mortality vs trends of non-lifestyle attributable mortality.
Projected lifestyle-attributable mortality fractions
Comparisons of different projections in Hungary

- **men**
- **women**
- **All cause mortality**
- **Life style and non-life style mortality**

Life expectancy at birth vs. Year (1990 to 2065)
Effect lifestyle when individually forecasting mortality (LC)

Belgium women

Spain
Effect lifestyle when coherently forecasting mortality (LiLee)

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected eo 2065</td>
<td>Projected eo 2065</td>
</tr>
<tr>
<td></td>
<td>Li and Lee</td>
<td>Li and Lee</td>
</tr>
<tr>
<td></td>
<td>eo 2014 Allcause</td>
<td>eo 2014 Allcause</td>
</tr>
<tr>
<td></td>
<td>direct</td>
<td>indirect</td>
</tr>
<tr>
<td>Belgium</td>
<td>78.6</td>
<td>88.6</td>
</tr>
<tr>
<td>France</td>
<td>79.3</td>
<td>89.4</td>
</tr>
<tr>
<td>Spain</td>
<td>80.1</td>
<td>89.4</td>
</tr>
<tr>
<td>Finland</td>
<td>78.1</td>
<td>88.4</td>
</tr>
<tr>
<td>Poland</td>
<td>73.7</td>
<td>85.8</td>
</tr>
<tr>
<td>Hungary</td>
<td>72.3</td>
<td>84.4</td>
</tr>
</tbody>
</table>
Summary of results

- Past increase eo nonlifestyle less strong compared to eo all-cause among men; slightly stronger among women
- Future LAMF: M decline; F wave shape
- When adding lifestyle to individual projections => eo (eventually) moving back to eo non-lifestyle
- When adding lifestyle to coherent projections => higher future eo and more convergence btwn sexes
Overall conclusion

- Mortality projections that take into account likely future changes in smoking, alcohol and obesity result in higher future e0 and - when projecting coherently - in larger convergence between sexes
Discussion

› Preliminary results
› Only data (for alcohol) from 1990 onwards
› Recent stagnations in life expectancy and its causes are not taken into account
› Dependent on projections lifestyle-attributable mortality (particularly lower bounds used)
› LC and Li-Lee => illustration of the effects
Thank you

www.futuremortality.com
References (1)

References (2)

References (3)

Projected lifestyle-attributable mortality fractions - men
Projected lifestyle-attributable mortality fractions - women
Descriptive model obesity epidemic

Figure 1 Model of the obesity epidemic: The criteria used to define the stages of the epidemic are based on the level of obesity prevalence and obesity-attributed mortality. Assuming 60 years between the current Stage 1 and Stage 2 to peak at a prevalence of 60%.

Xu & Lam (2018)
Descriptive model smoking epidemic

Reproduced by permission of BMJ Publishing Group.
Data

- six European countries, by sex and age, 1950-2016
- Age and sex-specific lifestyle-attributable mortality fractions
 - Alcohol (1990-2016; 20-100) => rates from Global Burden of Disease Study 2017 (20-64) and age pattern at highest ages using cause-specific mortality data from WHO.
 - Obesity (1975-2016; 20-100) => PAF formula applied to prevalence data (NCD Risk Factor Collaboration study 2017) and RR of dying from obesity (DYNAMO-HIA Consortium, 2010).
 - Smoothing over age
 - Three lifestyle factors combined => multiplicative approach
- All-cause mortality and exposure from HMD (past trends: August 27, 2018; projection: May 1, 2019)
Methods – future fractions I

› Novel projections that take into account the wave pattern of epidemics

› Smoking & Alcohol =>
 • APC (Cairns et al. 2009) applied to attributable mortality fractions with a generalized logit link function
 • projection kt by quadratic curve with correlated errors or by decline after peak (best ARIMA)
 • projection gc by extrapolating recent trend (best ARIMA) after burning the outer cohorts

› Obesity
 • Lee & Carter (1992) applied to transformed logit of prevalence
 • projection by linearly extrapolating past trend speed of change over time (1st order diff.)
 • 2000 onwards; 1985 onwards Eastern European women

› Ages up to 84
Methods – future fractions II

› Generalized / transformed => implementing bounds
 • Smoking => men LB 5% smoking prevalence; women UB max level women DK (not Hungary)
 • Alcohol => different LBs by country and sex
 • Obesity => LB age-specific prevalence 1975
› For ages 85 -100 => linear extrapolation of the logit of the fractions/prevalence for ages 75-84
› 500 simulations (for now)
› Multiplicative approach to combine the projected fractions for the three separate lifestyles
Unrealistically large future differences between countries

Eo 1950-2011 NL + other countries - women

Source: Statistics Netherlands
West European countries
The Netherlands

Stoeldraijer, van Duin and Janssen (2013)