UNECE Workshop „Water and Climate Change: HOW TO DEVELOP AN ADAPTATION STRATEGY IN TRANSBOUNDARY BASINS”
Geneva, Switzerland 10-11 May 2010

FRESHWATER AND CLIMATE CHANGE

ZBIGNIEW W. KUNDZEWICZ

Institute for Agricultural and Forest Environment,
Polish Academy of Sciences, Poznań, Poland

Potsdam Institute for Climate Impact Research,
Potsdam, Germany
1. Introduction
2. Observations
3. Projections
4. Adaptation and concluding remarks
1. Introduction

2. Observations

3. Projections

4. Adaptation and concluding remarks
In the global system, everything is connected to everything else. The climate and freshwater systems are interwoven in a complex way so that any change in one of these systems induces a change in the other.
1. Introduction

2. Observations

3. Projections

4. Adaptation and concluding remarks
Pasterze Glacier
Three categories of water problems:
* Too little water
* Too much water
* Polluted water

can be exacerbated by climate change
Hot and dry summer 2003 in much of Europe

Consequences for energy sector:
- Little water available for hydropower
- Little water available for cooling of power plants
- High river water temperatures (water temperatures after the cooling process exceeded environmental safety levels).

Temperature anomalies in Europe (a) and Switzerland (b), (c), (d). Source [IPCC AR4, 2007]
The frequency of heavy precipitation events has increased over most land areas. Further increase in frequency of heavy precipitation events, augmenting flood risk is very likely.
See:
Kundzewicz et al.,
Floods on the Vltava in Prague (Czech Republic)

Source: CHMU
Higher water temperatures, increased precipitation intensity and longer periods of low flows exacerbate water pollution (sediments, nutrients, pathogens, pesticides, salt and thermal pollution), with impacts on ecosystems, human health, and water system reliability and operating costs.
1. Introduction

2. Observations

3. Projections

4. Adaptation and concluding remarks
Temperature and precipitation projections for Poland.
Source: Tim Carter
Projection of changes in annual runoff (2041-2060 vs 1900-1970), for SRES A1B. Colour represents a median from 12 models. Presence of colour means that 8 or more models agree as to the direction of change (hatching: agreement of 11 or 12 models).
Change in recurrence of 100-year droughts, based on comparisons between climate and water use of 1961-90 and simulations for the 2020s and 2070s (ECHAM4 and HadCM3 climate models, emissions scenario IS92a and a business-as-usual water use scenario). Values calculated with the model WaterGAP 2.1 (Lehner et al., 2005b).
Projected water-related hot spots (boxes) superimposed on map of relative changes in runoff

1: Thickness of small island freshwater lens declines from 25 to 10 m due to 0.1 m sea level rise by 2040-2080

4: Flooded area for annual peak discharge in Bangladesh increases by at least 25% with a global temperature increase of 2°C

5: Electricity production potential at existing hydropower stations decreases by more than 25% by the 2070s.

2: Streamflow decreases such that present water demand could not be satisfied after 2030, and loss of salmon habitat

3: Groundwater recharge decreases by more than 70% by the 2050s

6: Increase of pathogen load due to more heavy precipitation events in areas without good water supply and sanitation infrastructure
1. Introduction

2. Observations

3. Projections

4. Adaptation and concluding remarks
Climate change affects the function and operation of existing water infrastructure as well as water management practices.

Adverse effects of climate on freshwater systems aggravate the impacts of other stresses, such as land-use change and urbanization.

Adaptation procedures and risk management practices for the water sector are being developed in some countries that recognize the uncertainty of projections.
• In parts of **Germany** (e.g. Bavaria), flood design values have been increased by a safety margin, based on climate change impact scenarios. The projections for 2050 include an increase of **40-50 %** in small and medium flood discharges and of **15 %** in 100-year floods.

• In the **UK**, the Defra’s precautionary allowance includes projection of increase in peak rainfall intensity (up to **20%** by 2085 and **30%** by 2115) and in peak river flow volume (up to **10%** by 2025 and **20%** by 2085), to reflect the possible effects of climate change, based on impact assessments.

• Measures to cope with the increase of the design discharge for the Rhine in **the Netherlands** from **15 000** to **16 000** m³/s must be implemented by 2015 and it is planned to increase the design discharge to **18 000** m³/s in the longer term due to climate change.
Acknowledgements to co-authors of:

IPCC WGII Fourth Assessment Report

Chapter 3: Freshwater Resources and their Management

Coordinating Lead Authors: Zbigniew W. Kundzewicz (Poland/Germany) and Luis Jose Mata (Venezuela)

Lead Authors: Nigel Arnell (UK), Petra Döll (Germany), Pavel Kabat (The Netherlands), Blanca Jimenez (Mexico), Kathleen Miller (USA), Taikan Oki (Japan), Zekai Sen (Turkey), Igor Shiklomanov (Russia)

Contributing Authors: Jun Asanuma (Japan), Stewart Cohen (Canada), Mark Nearing (USA), Richard Betts (UK), Christel Prudhomme (UK), Roger Pulwarty (Trinidad and Tobago), Roland Schulze (South Africa), Renoj Thayyen (India), Nick van de Giesen (The Netherlands), Henk van Schaik (The Netherlands), Tom Wilbanks (USA), Robert Wilby (UK)

Review Editors: Alfred Becker (Germany), James Bruce (Canada)
www.ipcc.ch

Publications and Reports

Reports (AR4) Technical Papers
Acknowledgements:

EU 6FP Integrated Project WATCH