Using worst case scenarios for identification of hazardous activities on industrial facilities
Definition

- **Worst-case scenario** is a situation where everything that could go wrong does.
 - In industrial accident management, it is usually used to define low probability-high consequences outcomes with the maximum negative consequences (fatalities, environmental pollution, material loss).
 - The release of the largest quantity of a hazardous substance from a single vessel or process line failure that results in the greatest distance to an endpoint (EPA, Offsite Consequence Analysis Guidance).
Requirements

- The accident scenario has to be:
 - **Realistic - no “invasion from Mars” assumptions**
 - **Based on the quantity and the properties of the substances, on the processes involved and the equipment used**
 - **Developed for each process and/or hazardous substance**
 - **Taking into account the different endpoints**
Background information

* For each process/substance
 * Determine the relevant hazardous properties of the substance involved
 * Toxicity, ecotoxicity, flammability, other physical-chemical properties
 * Storage/process conditions
 * Environment factors – topography, climate and meteorology, water bodies, residential areas, vulnerable sites, etc.
Developing worst case scenario

- Select a scenario
 - Define the sequence of the events that lead to the occurrence of an accident
 - Define the largest quantity of the hazardous substance to be released
 - For substances in vessels - release of the largest amount in a single largest vessel
 - For substances in pipes - release of the largest amount in a pipe
 - For substances in bulk (explosives only) – the largest amount in the warehouse
 - Determine the release
 - Determine the distance to the endpoint
Developing worst case scenario

- Determine the release
 - All of the substance is released
 - Short period of time is assumed (usually 10 mins.)
 - Different type of releases
 - Toxic gases
 - Evaporating toxic liquids
 - Water solutions of hazardous substances
 - Flammable gases and liquids
Example

- LPG storage facility
 - Hazardous substance – LPG – mixture of propane and butane
 - Hazards – extremely flammable, dense gas, liquefied, expands when heated
 - Possible outcomes – UVCE, Jetfire, BLEVE
 - Maximum amount of the LPG in the largest single vessel
 - Take into account possible domino effects
 - Release rate
 - Different models used
 - Based on vapour pressure, temperature, hole diameter, gas density
Example

- LPG storage facility
 - Endpoints
 - For UVCE – thermal radiation
 - For BLEVE – thermal radiation and overpressure

- Several methods of estimation
 - Modelling/calculation
 - Standard distances tables
 - Assume worst possible conditions
 - Stable weather conditions
 - Unsheltered surroundings
 - No topography mitigation
Example

○ Warehouse
 ● Hazardous substance – Toxic liquids in vessels
 ○ Possible outcomes – toxic release
 ● Maximum amount of a substance in the largest single vessel
 ○ If credible, simultaneous damage to more than one vessel should be considered – define the flow of events
 ○ Example – forklift operator error, resulting in puncture of X drums
 ● Release rate
 ○ Release at ground level
 ○ Unconfined pool
 ○ Calculation using different techniques - \(QR = 1.4 \times Q \times LFA \times DF \)
Example

- Warehouse
 - Endpoints
 - Toxic effects – AEGL, ERPG, LC50

- Several methods of estimation
 - Modelling/calculation
 - Standard distances tables
 - Assume worst possible conditions
 - Stable weather conditions
 - Unsheltered surroundings
 - No topography mitigation