EMEP/CCC

Wenche Aas, Kjetil Tørseth, Sverre Solberg, Stephen Platt, Karl Espen Yttri, Pernilla Nizzetto

Outline
- Status on routine work (implementation and status 2018)
- Workplan 2020-2021 items:
 - 1.1.1.3 Black carbon assessment: Intensive measurement
 - 1.1.1.4 Investigating monitoring of chemicals of emerging concern
 - 1.3.1. Near real-time data provision
- Other ongoing activities important for the Convention
Implementation of the monitoring strategy (level 1)

<table>
<thead>
<tr>
<th></th>
<th>since 2000</th>
<th>since 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parties with improved monitoring</td>
<td>63 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Parties with reduced monitoring</td>
<td>19 %</td>
<td>33 %</td>
</tr>
</tbody>
</table>

Net improvement
Measurement sites in 2018

Inorg.: 120 stations from 33 Parties

Ozone: 141 sites from 28 Parties

PM: 68 sites from 22 Parties

Aerosol prop: 45 sites from 17 Parties

VOC: 20 sites from 10 Parties

HM: 65 sites from 20 Parties

Hg: 25 sites from 13 Parties

POPs: 39 sites from 17 Parties
Air pollution during the summer heat wave 2018 - ozone and isoprene

- A downward trend in SOMO35, but 2018 were clearly elevated (similar for AOT40)

- Isoprene levels were elevated in 2018, correlated to increased temperature

During April/May-August: Northern and central part of Europe experienced a persistent heat wave. Can cause:
 - increased photochemistry
 - Increased biogenic emissions
 - Closed stomata: Less uptake of ozone

![Graph showing SOMO35 (sites > 49 N) during 2000-2018 with 2018 highlighted.]

![Graph showing isoprene levels at Waldhof from 2000-2017 vs 2018 with data points and box plot.]
Air pollution during the summer heat wave 2018 - aerosols

- PM$_{10}$ and PM$_{2.5}$ levels in Northern Europe were generally higher summer 2018 compared to preceding years.
- Mainly attributed to fine mode OC (organic carbon) and mineral dust - source regions both within and outside of Europe.
- Unchanged EC levels and reduced BB (biomass burning) and PBAP (primary biological aerosol particles) tracer levels point to BSOA (biogenic secondary organic aerosol) formation as the explanation of the increased level of fine OM.
The winter 2017/2018 intensive measurement period

- apportionment of equivalent black carbon (EBC) into fossil and biomass fractions

- Time series of the EBC fractions exhibit clear diurnal patterns for the urban sites while low diurnal variations at background sites

- Biomass burning contributes significantly to all station types, thus a regional as well as a local problem

- Data that are available to the community on request.
Contaminants of Emerging Concern (CECs)

CEC: Pollutants detected in the environment, which might cause environmental or health impacts, AND typically are currently not regulated

- Many CECs are detected at high concentrations in air
- Long-range transport of CECs occurs, but local sources difficult to assess
- Sampling and analytical challenges
- require guidance and inter-calibration
- International cooperation necessary (i.e. NORMAN)
- Workshop suggested for autumn 2020 but postponed

Examples of component groups:
- cVMS (cyclic volatile methyl siloxanes)
- S/MCCPs (Short and medium chain chlorinated paraffins)
- Volatile PFAS
- Phthalates
- New brominated flame retardants
- Organophosphorous flame retardants
- Dechloranes
- Bisphenols
- (Suspect/non-target screening)

Concentrations in background air - Svalbard (Zeppelin)
Monitoring of CECs in EMEP

Dechlorane Plus in European background air
Estimated concentrations in air from passive air sampling

Passive air sampling campaigns are useful tools for identifying CECs important for EMEP
Implementation of NRT (EMEP/GAW/ACTRIS)

Operational in 2020:
- 16 sites
- 14 component types
- 6 instrument types
- ~1600 datasets

Still no contract between Copernicus and EMEP. However, data from many EMEP stations are used through the EEA data delivery.
Key challenges and work items:

- Stable monitoring program, some improvements on level 2, but a need to focus on improving coverage and participation from EECCA
- Data flow and dissemination improved considerably the later years incl protocols etc (i.e. ENVRI-FAIR)
 - PID on data now being implemented, and licensing of EMEP data under consideration
- EMEP observations in support of other policy frameworks (Minamata, Stockholm, AQFD..)
- ACTRIS to be formally established as an RI (2022?)
- Improvements to the data reporting system
- Developing new web tools to meet individual needs for creating data products from the database (maps, statistics etc)
- Integration getting more important
 - modelers, incl data assimilation and data fusion (WMO/GAW, Copernicus)
 - other observing system (satellites, low cost systems)
 - effects (climate, health, ICPs)
 - local air quality