Session on tropospheric O$_3$
15th and 16th September 2020

Introduction and major issues, summer O$_3$ pollution episodes in Spain, and O$_3$ and COVID19

X. Querol1, J. Massagué1, M. in ‘t Veld1, C. Carnerero1, A. Alastuey1, E. Mantilla2, A. Muñoz2, E. Borrás2, T. Vera2, M. Escudero3, G. Gangoiti4, J. de la Rosa5, Ana Sánchez de la Campa5, J.R. Moreta6, A. Campos8, M. Hervás8, R. Javato8, M.J. Cornide8, M. Muñoz8

1Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Barcelona, Spain
2Centro de Estudios Ambientales del Mediterráneo, CEAM, Unidad Asociada al CSIC, Valencia, Spain
3Centro Universitario de la Defensa de Zaragoza, Academia General Militar, Zaragoza, Spain
4E.T.S. Ingeniería de Bilbao, Dpto. Ingeniería Química y del Medio Ambiente, Universidad País Vasco UPV/EHU, Bilbao, Spain
5Centro de Investigación en Química Sostenible, (CIQSO), Unidad Asociada al CSIC, Universidad de Huelva, Huelva, Spain
6Agencia Estatal de Meteorología, AEMET, Madrid, Spain
7D.G. Calidad y Evaluación Ambiental, Ministerio para la Transición Ecológica y Reto Demográfico, Madrid, Spain

6$^{\text{th}}$ Joint Session of the Steering Body to EMEP and the Working Group on Effects
14-17 September 2020
Session on tropospheric O_3

Sub-session on atmospheric pollution of tropospheric O_3

- Xavier Querol, EMEP- Sci. Bureau: Introduction and major issues, O_3 in if summer acute pollution episodes in Spain, and O_3 and COVID19
- Tim Butler HTAP. Hemispheric transport of O_3, trends and hemispheric contributions to regional background levels, methane issues
- Augustin Colette, TFMM. Trends of O_3 in Europe, local/regional/hemispheric contributions
- David Simpson, on behalf of MSC-W and CCC. VOCs used for O_3 modelling and VOCs measured in EMEP. Methods used and regional coverage.

Sub-session on O_3 effects

- Dorota Jarosinska, TFH, WHO, Ozone and health effects
- Felicity Hayes, ICP- Vegetation, Effects of O_3 crops and vegetation
Session on tropospheric O$_3$

AIMS

Review the state of the knowledge on tropospheric O$_3$ pollution in the perspective of the review the Gothenburg Protocol

• Trends and changes in the last decade
• Modelling capabilities
• VOCs and NOx as precursors
• Evaluation of measured VOCs and those needed for proper modelling
• Potential for O$_3$ abatement strategies
• Effects on health and ecosystems

What are we learning on this issue from the COVID19?
• Need for always specifying when trends, contributions, emissions and abatement policies refer to background O$_3$ and spring-summer O$_3$ pollution episodes
• What modelling and experimental tools are available to differentiate local, regional, hemispheric and stratospheric contributions and implement accurate sensitivity analysis?
• Have enough accurate information on VOC precursors covering regional variability and changes in the last decades?
• Is the EMEP strategy on VOCs measurements fully implemented. Does it cover all VOCs necessary for O$_3$ modelling?
• What scales are required for accurately modelling local contributions and complex meteorology?
• O$_3$ acute episodes decreased in the last decades, but are these decreasing in the last one?
• Idem for the increase of urban O$_3$
• What are the feedbacks of O$_3$ and climate?
• What are the expected impacts of climate warming on both BACKGROUND AND LOCAL/REGIONAL O$_3$ pollution episodes?
• And on other pollutants, such as PM2.5, in urban areas where O$_3$ increases
• What are the major effects of O$_3$

TO WHAT EXTEND CAN BE TROPOSPHERIC O$_3$ COTS-EFFECTLY REDUCED AT BACKGROUND AND PEAK LOCAL/REGIONAL POLLUTION
1. Local/regional/hemispheric contributions during intensive O$_3$ episodes: A general mismatch between modelling & experimental approaches

O$_3$ 2010–2019 Spain

93,2 of 8hDM averages

N of daily 8hDM ≥ 120 µg m$^{-3}$

O$_3$ 2000–2015 Spain

N of days hourly O$_3$ > 150 µg m$^{-3}$

N of days hourly O$_3$ > 180 µg m$^{-3}$

Updated from Querol X. et al., 2016

Science of the Total Environment

N = 332 (excluding Canary Isd.), sites with >7 years, ≥75% data coverage 2010–2019, and in operation 2018-2019
1. Local/regional/hemispheric contributions during intensive O_3 episodes: A general mismatch between modelling & experimental approaches

09-11/07/2019, 8, 14, 20 hLT
Airborne, microlight O_3 (PO3M), BC, PM2.5, UFP, meteo

O_3 & meteo free-soundings 09-11/07/2019

OVOCs, HVOCs 27/06/2019 to 12/07/2019
1. Local/regional/hemispheric contributions during intensive O_3 episodes: A general mismatch between modelling & experimental approaches

Results of the field campaign: Microlight flights (09-11/07/2019)
1. Local/regional/hemispheric contributions during intensive O₃ episodes: A general mismatch between modelling & experimental approaches

Results of the field campaign: Conceptual model O₃ episodes VdG

- **Day 1**
 - a: Vertical re-circulation & fumigation
 - b: Formation & transport into GV

- **Day 2**
 - X1: O₃ formation and transport in GV same day
 - X2: O₃ accumulated by vertical re-circulation & fumigation in the day

- **Day 3**
 - Y: O₃ accumulated by vertical re-circulation & fumigation in 2 days

In ’t Veld et al., 2020
STOTEN
Submitted

- **O₃ Sevilla (urban background)**
- **O₃ Doñana (remote, regional background)**
1. Local/regional/hemispheric contributions during intensive O_3 episodes: A general mismatch between modelling & experimental approaches

Results of the field campaign: Microlight flights (09-11/07/2019)

- **Plume petrochemical plant**
- **Urban plume**
- **Zone with intensive agricultural burning**

O$_3$ (ppb)

- 09/07/2019
- 10/07/2019
- 11/07/2019

Z
2. The issue of VOCS

Results of the field campaign: VOCs (27/06/2019 to 12/07/2019)

Cluster 0
- 2-Pentanona
- Acetaldehído
- Butiraldehído
- Formaldehído
- Hexanal
- Hexanona
- Hidroxiacetona
- Metacroleina
- Nonanal
- Pivaldehído
- Ácido pirúvico
- Valeraldehído

Cluster 1
- 1,2,4-Trimetilbenceno
- 1-Hepteno
- 1-Octeno
- 4-Etiltolueno
- Acetona
- Acetofenona
- Benceno
- Camfeno
- Decano
- Dodecano
- Heptanal
- Hexametilciclotrisiloxano
- Indano
- m-Propiltolueno
- Nonano
- Octametilciclotetrasiloxano
- Octanal
- Octano
- o-Címeno
- o-Propiltolueno
- Propilbenceno
- Tribromometano
- Trimetilbenceno isómero_1
- Trimetilbenceno isómero_2
- Undecano

Cluster 2
- 1,2,3-Triclorobenceno
- 1,3,5-Trimetilbenceno
- 2,2-Dimetilbutano
- 2-Butanona
- Benzonitrilo
- Butilacetato
- Heptano
- Hexano
- m,p-Xileno
- o-Tolualdehído
- o-Xileno
- Ácido propanoico
- Estireno
- Tetracloroetileno
- Tolueno

Cluster 3
- a-píreno
- Benzoquinona
- b-píreno
- Dimetiletereno
- Glicolaldehído
- Sabinketona
- Limoneno
- m-Címeno
- Metilciclohexano
- Pinonaldehído
- Tetradecano
- Valerolactona
2. The issue of VOCS

Results of the field campaign: (27/06 to 12/07/2019 VdG, 03 to 17/07/2019, Vic-BCN)

Maximum O₃ Formation Potential by aggregating [concentrations x MIR (Carter, 2009) maximum incremental reactivity]
3. Impact on urban O$_3$ rising on oxidative patterns and secondary PM formation

The issue of the origin of organic carbon in PM: Increasing oxidizing patterns

- Urban O$_3$ levels are increasing in many urban areas of the EU
- Causes:
 - Urban NOx decreased very smoothly, but NO more steeply
 - Saturated areas in NOx and VOCs sensitive
- Net effect: increasing oxidizing capacity of the urban atmosphere: higher PM (nitrate and SOA)

Madrid city: Modelled 2004-2007 averaged annual increase in %

Saíz-López A. et al. (2017) Scientific Reports 7, 45956

OH radical
NO$_3$ radical
4. COVID19 and O_3 in Spain

% O_3 8hDMA REDUCTION

PRE-PANDEMIC: 14/02 TO 15/03; LOCKDOWN: 16/03 TO 30/05, RELAXATION: 31/05 TO 30/06 AND 31/05 TO 31/07

Road traffic reduction

in Barcelona
64% whole lockdown
80% full lockdown
22% relaxation June
17% relaxation JunJul

in Madrid
62% whole lockdown
80% full lockdown
34% relaxation June
19% relaxation JunJul

Querol et al. 2020.
In preparation
4. COVID19 and O_3 in Spain

8hDMA O_3 change 15th March to 30th April

Observed O_3 change

Meteorology-adjusted O_3 change

Ordóñez C. et al. (2020) STOTEN, 747, July 2020
2000-2019 Mean O₃ µg/m³
+0.10µg/m³/year \(p > 0.1 \)
+0.55µg/m³/year \(p < 0.001 \)

2010-2019 +0.02µg/m³/year \(p > 0.1 \)
+0.13µg/m³/year \(p > 0.1 \)

2000-2019 Mean Oₓ µg/m³
+0.05µg/m³/year \(p > 0.1 \)
+0.01µg/m³/year \(p > 0.1 \)

2010-2019 -0.08µg/m³/year \(p > 0.1 \)
-0.26µg/m³/year \(p > 0.1 \)

2000-2019 Mean Oₓ µg/m³
+0.49µg/m³/year \(p < 0.001 \)
+0.74µg/m³/year \(p < 0.001 \)

2010-2019 +0.00µg/m³/year \(p > 0.1 \)
+0.48µg/m³/year \(p < 0.1 \)

2000-2019 Mean Oₓ µg/m³
-0.11µg/m³/year \(p < 0.1 \)
-0.21µg/m³/year \(p < 0.001 \)

2010-2019 -0.36µg/m³/year \(p < 0.05 \)
-0.31µg/m³/year \(p < 0.1 \)
2000-2019 Percentile 93.2 8 h µg/m³ O₃

2010-2019 -0.28 µg/m³/year p<0.05
+0.19 µg/m³/year p>0.1
-0.28 µg/m³/year p<0.05
-0.03 µg/m³/year p>0.1

2000-2019 N exceedances 1 h>180 µg/m³ O₃/site/year

-0.04 µg/m³/year p>0.1
-0.09 µg/m³/year p<0.001
-0.01 µg/m³/year p>0.1
-0.03 µg/m³/year p>0.1
-0.13 µg/m³/year p<0.001
-0.02 µg/m³/year p<0.1

2010-2019 -0.04 µg/m³/year p<0.1
+0.03 µg/m³/year p<0.05
-0.04 µg/m³/year p<0.05