TFIAM Progress 2015-2016

Rob Maas
Launched 31 May 2017

Excellent cooperation with other Task Forces and ICPs

Review process could have been more structured

Perhaps a plenary review of the text would have been better?

Report received well among policy makers

Press coverage disappointing (except Le Monde)
Research topics identified during AR process

1. Emission data:
 a. Completeness and accuracy of emission data: obstacles for EECCA/SEE ratification GP
 b. All parties: uncertainty emission data of PM, NH3, VOC, ships, real world emissions
 c. Improving the review process
 d. Treatment of ‘condensables’

2. Dispersion modelling: e.g. ammoniumnitrate concentration, NH3 & N-deposition

3. Implementation ‘lean’ monitoring strategy:
 aimed at measuring progress in air quality, health risks and ecosystem improvement

4. Health risks: particulate matter(s) and NO2

5. Biodiversity loss modelling: multistress impacts (air-climate-water-land use)

6. Ozone – nitrogen - climate interactions: e.g. carbon sequestration

7. Cost-effective control strategies
 a. Combined strategies for PM, PB, Cd, Hg, PAH, HCB, ...
 b. Integrated agricultural strategies for CH4, N2O and NH3
 c. Cost-effective multilayer governance to meet WHO AQGs: global to local

8. Hemispheric transport and climate change
 a. Emissions (present control, compatibility with national emission inventories)
 b. Source-receptor relationships (model comparisons)
 c. Assessment of effects
 d. Cost-effective hemispheric ozone strategies with and without further climate policy

9. Outreach: expansion of the policy-science network globally and to energy, transport and agricultural policy processes ... SDGs
Recent developments in Integrated Assessment Modelling
Discussion on the SHERPA model (JRC)
Focus on air pollution impacts of climate policy
Citizens’ perception of pollution sources (SEFIRA CAWI)

PM sources (IIASA TSAP report #12 2009)

- Households
- Industry
- Traffic (primary PM)
- Agriculture (secondary PM)
- Agri and traffic+Agri and Industry
- Natural
- Other

Households
Industry
Traffic
Agriculture
Other
Sources of ambient PM2.5 in Delhi
Initial GAINS estimates

Kiesewetter et al., in prep.
Table 4: Health Impact from NO$_2$ (2013)

<table>
<thead>
<tr>
<th></th>
<th>Central (2.5%)</th>
<th>Low (1%)</th>
<th>High (4%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual equivalent attributable deaths</td>
<td>23,500</td>
<td>9,500</td>
<td>38,000</td>
</tr>
<tr>
<td>Annual Social Cost</td>
<td>£13.3bn</td>
<td>£5.3bn</td>
<td>£21.4bn</td>
</tr>
</tbody>
</table>

Possible overlap between the health impacts associated with ambient concentrations of particulate matter (PM) and NO$_2$ need to be borne in mind when considering the above estimate. It is likely that there will be some overlap. Further work is being undertaken to understand and quantify this overlap but the current recommendation is that between 0 and 33% of the effects associated with ambient concentrations of the two pollutants overlap. Table 5 below provides an indication of the combined effect associated with these pollutants assuming that the two are completely independent.

Table 5: Total health Impact from PM and NO$_2$

<table>
<thead>
<tr>
<th></th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual equivalent attributable deaths</td>
<td>44,750 - 52,500</td>
</tr>
<tr>
<td>Annual Social Cost</td>
<td>£25.3bn - £29.7bn</td>
</tr>
</tbody>
</table>
Assume: on top of 70% gap closure for health
75% gap closure for biodiversity

Additional cost (+1%) = 23 M€
Additional benefit = 35-2500 M€

Additional ammonia measures for 3% largest farms
SO₂

- Energy transition will provide a significant additional reduction of emissions
- National totals without agriculture
- Main reductions come from transport sector
- Difference between CLE and ET is mainly caused by energy industries
Co-benefit study Netherlands

PM-emission impact uncertain: domestic wood burning, biofuels, biomass
Ammonia emissions by source category [kilotons]

With additional climate measures including CH4

From: presentation Gaston Theis, Swiss Federal Office for the Environment
Air pollution risks of climate policies

• Wood burning
• Diesel, direct injection gasoline cars
• Biofuels
• Biodigesters
•

Integrated climate-air policy approach is needed: one atmosphere!
Biomass burning and air quality in Germany

Annual emissions of PM$_{2.5}$ in kt in Germany

Modelled contribution from biomass burning to PM concentrations in the rural background in 2005

- Regulation of dust emissions for stoves are based on measurements on a test bench
- Impact on climate by emissions of black carbon
Recent IAM activities in Russia

Further investigation of the advantages of new regionalization in the GAINS Russia model.

Financed by the Nordic Council of Ministers, 2015-2017

Interim results:
1. EMEP modelling
2. Ammonia in agriculture
3. Comparison of PRIMES scenarios
4. BC (gridded) EI comparison
1. EMEP modelling: CEIP vs. national data, SO$_2$ in 2012

Diff = National − CEIP data

<table>
<thead>
<tr>
<th>N</th>
<th>Region</th>
<th>Diff, kt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Murmansk oblast</td>
<td>182</td>
</tr>
<tr>
<td>2</td>
<td>Komi Republic</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>Orenburg oblast</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>Moscow oblast</td>
<td>-69</td>
</tr>
<tr>
<td>5</td>
<td>Arkhangelsk oblast</td>
<td>58</td>
</tr>
</tbody>
</table>
Ship emissions occur close to land

Globally, 70-80% of ship emissions take place within 400 km from shore.

In the North Sea, 90% of emissions take place within 90 km from shore.
NOx emissions with/without a NOx-ECA and with/without a NOx levy

Source: IVL/CE Delft (2016)
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Technological and behavioural changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech 1</td>
<td>All double-deck buses to hybrid; all single deck buses to zero emission; all taxis to Euro 6 (diesel black cabs)</td>
</tr>
<tr>
<td>Tech 2</td>
<td>Tech 1 + Ultra Low Emission Zone (ULEZ) implemented</td>
</tr>
<tr>
<td>Tech 3</td>
<td>Tech 2 + ban diesel cars completely from London</td>
</tr>
<tr>
<td>Behaviour 1</td>
<td>Cycle superhighway (all reduced car traffic to bicycles) – reduce traffic flow 10%</td>
</tr>
<tr>
<td>Behaviour 2</td>
<td>Increased active travel (5% car trips to cycling; 5% car trips to walking) and public transport (10% car trips to bus) = 20% of car trips replaced</td>
</tr>
<tr>
<td>Behaviour 3</td>
<td>Most increased active travel (25% car trips to cycling; 15% car trips to walking) and public transport (10% car trips to bus) = 50% of car trips replaced</td>
</tr>
<tr>
<td>Combined “ideal”</td>
<td>No private cars in London (30% car trips to bus, all of which are zero emission; 50% car trips to cycle; 20% car trips to walking) and all black cabs zero emission, including London wide ULEZ standards for remaining vehicles</td>
</tr>
</tbody>
</table>
Health impacts, estimated as number of deaths avoided per year resulting from changes in air pollution, physical activity, and traffic fatalities, for the 7 policy scenarios (based on TAPAS)
ACT OF 26 AUGUST 2013 FOR COMBUSTION INSTALLATION OF 20 TO 50 MW AND ACT OF 25 AUGUST 1997 MODIFIED (IN 2013) (4/4)

Legal leverage	No special needs (3)
Level controversy and acceptability | Controversy noted (1) but less correct today as the act has been implemented
Operationnallity in 2020 | The deadlines for compliance ranges from 2016 and 2018 according to size plants and fuels used. The reduction techniques are available

SO₂

NOₓ

PM₁₀

May 2016 – N. Allemand / S. Schucht

Results per measure
Future plans

• Scenario analyses:
 Updated emissions, projections, transfer matrix, risk factors, measures, evaluation NECD, new evaluation Climate & Energy measures,

• Workshop on local measures (Feb 2017)
• TFIAM46: Paris 2-3 May 2017
• TFIAM47: Brescia May 2018
Research topics identified during AR process

1. Emission data:
 a. Completeness and accuracy of emission data: obstacles for EECCA/SEE ratification GP
 b. All parties: uncertainty in emission data of PM, NH3, VOC, ships, real world emissions
 c. Improving the review process
 d. Treatment of ‘condensables’

2. Dispersion modelling: e.g. ammonium nitrate concentration, NH3 & N-deposition

3. Implementation ‘lean’ monitoring strategy: aimed at measuring progress in air quality, health risks and ecosystem improvement

4. Health risks: particulate matter(s) and NO2

5. Biodiversity loss modelling: multistress impacts (air-climate-water-land use)

6. Ozone – nitrogen - climate interactions: e.g. carbon sequestration

7. Cost-effective control strategies
 a. Combined strategies for PM, Pb, Cd, Hg, PAH, HCB, ...
 b. Integrated agricultural strategies for CH4, N2O and NH3
 c. Cost-effective multilayer governance to meet WHO AQGs: global to local

8. Hemispheric transport and climate change
 a. Emissions (present control, compatibility with national emission inventories)
 b. Source-receptor relationships (model comparisons)
 c. Assessment of effects
 d. Cost-effective hemispheric ozone strategies with and without further climate policy

9. Outreach: expansion of the policy-science network globally and to energy, transport and agricultural policy processes ... SDGs