Report on the Task Force on Modelling and measurement activity

Laurence Rouil, Oksana Tarasova

Main activities in 2013

Annual meeting held in Zagreb, Croatia (May 2013)

Monitoring strategy :

- Intensive Observation Periods: last experiment set-up and analysis of available results (see CCC reports and publications)
- Strong links with research infrastructures

Pilot studies on heavy metals

 Fruitful cooperation with national experts to investigate inconsistencies between emission, measurement and modelling data

Emission issues

What are the key messages/needs from the modelling community

Modelling activities

- Grid transformation of EMEP models
- EMEP models development and national expertise
- EURODELTA 3 model intercomparison project

Implementation of the revised EMEP monitoring strategy

- Time to assess the level of consistency between the EMEP strategy and the networks actually implemented in the Parties
 - CCC looks for relevant indicators to check how far are the national EMEP networks from the strategy requirements
 - Funding issue remains a recurrent concern, as the sustainability of historical sites where long term time series are available
 - Need to define future priorities and to prepare/adapt the monitoring strategies (black carbon, VOCs,)
- Use of the IOPs to improve knowledge and understanding
- Lack of coordination between the various research initiatives which might be confusing for the policy makers who receive this information

Heavy metal pilot studies

- Launched in 2010 under the coordination of MSC-East: indepth investigation of inconsistencies between heavy metals emissions, measurement and modelling
- Currently pilot studies involve 3 volunteer countries involved:
 - Croatia : achieved
 - the Czech republic: achieved
 - the Netherlands : on-going
- Successful initiatives which allowed to highlight countryspecific issues for a better management of air pollution thanks to an n-depth involvement of national experts
- A brochure has been published to illustrate the results obtained so far
- TFMM recommended:
 - To extend such studies to other countries (Belarus?) and for other pollutants (mercury)

Emission issues

- Model results highly driven by emissions,
- What are the most sensitive parameters in emissions to improve model results:
 - Need for gridded emissions: appropriate and reliable spatial distribution influences the quality of model results
 - Appropriate **spatial resolution**: should go with the improvement of model resolution. Optimum to be defined, especially in terms of costbenefits
 - "Non-inventoried" emissions: biogenic emissions, forest fires, dusts, resuspension.... Need for recommendations on common practises to calculate them
 - When possible chemical composition by sectors (PM, VOCs, PAHs,...)
 - **Completeness** of emissions over the targeted domain
 - ➤ Historical sets of emissions : to learn from the past

TFMM contribution related to emissions issues

- It is possible to prioritize our needs: looking for the 3 most critical points....
- Conversely TFEIP and CEIP could express some needs to the TFMM
- Working together on 1 or 2 test cases (country) to analyse
 - the differences between gridded emissions reported to EMEP and national emissions
 - Their impact on modelling air pollution patterns in this country and their comparison to observations
- Feedback on use and quality of "scientific-oriented" gridded emissions inventories?

Modelling activities

- Grid transformation of the EMEP model
 - Downscaling modelling exercise to assess the impact of finer resolution on model results
 - Report published
- EURODELTA3 project
 - Launched in spring 2012

The Eurodelta III exercise

• Two phases:

- 1. Simulation of EMEP IOPs (2009, 2008, 2007, 2006)
 - validation
- 2. Retrospective analysis (2008, 1999, 1990)
 - Ability of models to reproduce the difference of concentrations for the three key years, how models work under different chemical regimes
- Common inputs for models: meteorology (IFS), emissions (EC4MACS dataset), boundary conditions (MACC), domain (except CMAQ)
- CAMx (**PSI/RSE**), CHIMERE (**INERIS**), CMAQ (**HZG**), EMEP (**Met.no**), LOTOS-EUROS (**TNO**), MINNI (**ENEA**), RCG (**FUB**)
- Others participants:
 - DG JRC, CIEMAT, BSC, IPSL-CNRS, Univ of Brescia, NILU
 - TOTAL, CONCAWE, LWA

2009 Campaign

Different pattern over the Po valley for LOTO and RCGC

Diurnal cycles

- > **03**: CMAQ, EMEP and CHIM have the lowest bias
- NO2: LOTO has the lowest bias, best diurnal cycle for MINNI
- **PM10**: MINNI has the best diurnal

Best performances based on RMSE

Model ranking based on daily basis data three best models)

All daily obs.	obs.
----------------	------

10% highest

	obs.	•	
•	03	CHIM, CAMX, EMEP	CAMX, EMEP , CHIM
•	NO2	CAMX, CHIM, EMEP	EMEP, MINNI, LOTO
•	S 02	CHIM, LOTO, EMEP	EMEP, LOTO, CMAQ
•	PM10	EMEP, CHIM, MINNI	EMEP, MINNI, CHIM
•	PM25	CHIM, MINNI, EMEP	MINNI, CHIM, CAMX
•	SO4*	EMEP , CMAQ, LOTO	MINNI, CAMX, CHIM
•	NH4*	EMEP , LOTO, CHIM	CHIM, CMAQ, MINNI
•	NO3*	CHIM, EMEP , LOTO	CHIM, MINNI, RCGC
•	TOM*	CHIM, MINNI, RCGC	CAMX, CHIM, MINNI
•	EC*	EMEP , MINNI, LOTO	EMEP, MINNI, LOTO
•	DUST*	EMEP, LOTO, CAMX	RCGC, MINNI, CAMX
•	NA*	EMEP , LOTO, RCGC	EMEP, RCGC, CHIM
	0.0.0		

EURODELTA 3: next steps

- Publication of a common report on the simulation of the IOPs by the end of the year 2013
- Start the retrospective analoysis :
 - Capacity of current models to reproduce monitored changed in air quality
 - Retro. analysis $2008 \rightarrow 1999 \rightarrow 1990$

Pre-crisis yr.
Current period Signature of the GP. Baseline yr GP.

- Response of models to sharp emission trend (1990-1999 2008)
- Link with the TFHTAP work plan, especially the intercomparison modelling exercise

TFMM Work plan for 2014–2015 (i)

- Follow and assist the Parties as far as possible, for the implementation of the monitoring strategy. Support the assessment phase (compliance with the EMEP monitoring strategy)
- Support the analysis of the EMEP IOPs data and help in their promotion. Encourage dissemination of results for national assessments and linkages with the modelling community
- Support for the heavy metals pilot studies; contribute to their promotion; identify future studies
- Contribute as far as possible to emission inventories improvement

TFMM Work plan for 2014–2015 (ii)

- Coordination and promotion of the EURODELTA3 project followup (1st phase report and retrospective analysis)
- Trend analysis: a new task in the 2014-2015 TFMM work plan
 - Based on both meaurement and modelling data, available from the EMEP program and from national initiatives
 - Review of available material: EMEP centers, national trends analyses, scientific publications
 - Need for complementary data and new model runs? specifications
 - Methodology to calculate and compare modelled and observed trends
 - Feedback to policy makers (within the Gothenburg assessment initiative?)