Introduction of a simple (!) index to assess intensity and changes in monitoring activities

- Changes over time
- Comparison between Parties

Kjetil Tørseth, Anne Hjellbrekke and Wenche Aas EMEP-CCC

Year	# countries	# sites	#compounds	#datasets
2000	33	184	213	3681
2005	34	183	319	4721
2010	36	178	322	8131

Based on data submissions

- Number of sites with data reported
- Number of variables reported
- Number of variables having adequate time resolution
 - ✓ Major inorganics in precipitation (10 variables)
 - ✓ Major inorganics in air (13 variables)
 - ✓ Ozone (1 variable)
 - ✓ PM mass (2 variables)
 - ✓ Heavy metals in precipitation (7 variables)

Compare «actual» number of variables reported with «expected»

Recommended site density Level 1: 1/50000 km²

- Land area -> give «target number» of sites
- Adjustment for countries with very large area and few sites (-> 1/500000 km2)(KZ, RU, TR, UA)
- Not account of marine areas

Example Norway 2005:

Country		Land area		
code	Country	(km2)	50000	#sites_required
NO	Norway	385000	7,7	8

		main precip #components
main precip #siteswithdata	main precip #components reported	sufficient_time_res
6	60	50

Expected: 8 sites * # variables expected = 80 datasets of precipitation chemistry

Reported: 60, however only 50 meet requirements wrt time resolution

These 10 datasets are given 50% weight: 50 + 10/2 = 55%

«implementation» = 55/80 = 69%

Heavy metals_precipitation

Simplifying (?) going from % implementation to an index

Based on relative implementation, assuming the following weights:

✓ Inorganics in precipitation: 30%

✓ Inorganics in air: 30%

✓ Ozone: 20%

✓ PM mass: 10%

✓ Heavy metals: 10%

«implementation» limited to 100%

Example Norway 2005:

```
(0,3 * 63\%) + (0,3 * 74\%) + (0,2 * 100\%) + (0,1 * 13\%) + (0,1 * 29\%) = 65
```


Level 2:

- More difficult to assess due to larger heterogenity
 - In particular «time resolution» (campaigns etc)
 - Many variables/compounds
 - Long-term committment is partially lacking (often relies on research funding)
- Example of a first attempt shown on next slide, but more work is needed

Conclusions:

• Implementation of Level1 still an issue

- Need for increased awareness at SB level
 - Plots of implementation index to be presented in data reports and at SB sessions
- Level2 activities need strengthening
 - campaigns vs continuous
 - Post ACTRIS, need for relevant international research calls, etc.