CIAM Progress and future plans

Z. Klimont

Center for Integrated Assessment Modelling (CIAM)

SB Meeting, 36th session, Geneva 17-19 September, 2012

Progress

Cooperation with TFIAM, TFRN, TFEIP, TFMM, HTAP, EGTEI, MSC-W, CCE

CIAM reports:

- Inform negotiators about the scope for further environmental improvement and development of cost-effective scenarios for a range of environmental targets (CIAM 1-4/2011 reports and presented at several meetings); assessment of the health and environmental improvements resulting from the revised Protocol (CIAM 1/2012)
- Potential and costs of reducing ammonia (CIAM 5/2011)
- Participation in scale dependency exercise
- Implementation of new, long-lat high-resolution, source receptor and impact calculation in GAINS, inc. ozone-fluxes
- Implementation of the new WHO GBD (Global Burden of Disease)
 concentration-response functions

Paper documenting GAINS methodology and recent applications in Europe

Environmental Modelling & Software 26 (2011) 1489–1501

Contents lists available at SciVerse ScienceDirect

Environmental Modelling & Software

Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications

Markus Amann^{a,*}, Imrich Bertok^a, Jens Borken-Kleefeld^a, Janusz Cofala^a, Chris Heyes^a, Lena Höglund-Isaksson^a, Zbigniew Klimont^a, Binh Nguyen^a, Maximilian Posch^b, Peter Rafaj^a, Robert Sandler^a, Wolfgang Schöpp^a, Fabian Wagner^a, Wilfried Winiwarter^a

^a International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria

^b National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands

Potential and costs of ammonia mitigation; CIAM report in collaboration with TFRN

- TFRN proposed three ambition levels of application of measures across the UNECE (A,B,C),
- CIAM cost-optimal scenarios to achieve various environmental targets (impact of LOW and MID shown below)

Figure A: Cost-effectiveness of the scenarios A, B and C in comparison to the MID and LOW scenarios described in the CIAM 4/2011 report. Left: EU27, right: non-EU countries.

Updated PM2.5 fine-scale inventory for SNAP Sector 2 (domestic)

Model validations for PM2.5/PM10 showed systematic problems in winter throughout Europe

- New temporal profile for domestic heating proportional to heating degree days
- Fine scale (7km) emissions downscaled with population data, considering saturation of percapita emissions with increasing population density
- Correction of PM size distribution for Poland, spatial re-allocation to account for non-commercial coal use

A Hybrid (observations/modelling) approach for the street canyon increment (Kiesewetter et al., 2012)

Hypothesis:

• $NO_2/PM10$ street canyon increment are explained by direct dispersion of NO_2 and NO_x/O_3 chemistry:

$$[NO_2]_{ss} = f([NO_2]_B, [NO_x]_B, [O_3]_B, [NO_x], p(NO/NO_2), T)$$

For each station parameterization derived from historic data:

- [NO₂]_{SS}: Street canyon concentrations - from AIRBASE

- $[NO_2]_B$, $[NO_x]_B$, $[O_3]_B$: Observed urban background – from AIRBASE

- p: NO/NO₂ ratio - from GAINS

[NO_x]: local traffic emissions (time profile known)

– т: mixing time in the street canyon, derived from

regression of hourly AIRBASE observations for

each station with NO₂ exceedance

For future scenarios, changes from GAINS/EMEP are used

Parameterization of T derived from AIRBASE weekly patterns

Urban vs. national emission trend

Urban emissions: Estimated via HBEFA emission factors, TREMOVE traffic activity model

In the past, urban traffic NOx emissions declined slower than total country traffic emissions – Future changes will be computed within GAINS

Scenario calculations for specific stations: Some initial examples

Illustrative scenario calculations: compliance

Approach for modelling PM10 exceedances

 Coarse fraction: EMEP+CHIMERE model vs observations 2009

Fine fraction:

- 28 km model (S/R) results downscaled to 7 km using on local low-level emissions (~urban background)
- For each station, local dispersion characteristics of fine PM derived from τ determined for NO2

Coarse fraction:

- Poor fit of model results (emissions?, re-suspension?)
- How could sources of coarse emissions change in future?
- Hypothesis: Only few measures would influence coarse fraction (street cleaning?)1

CIAM workplan

- Bilateral consultations
- HTAP workshop on global emission scenarios for 2030 (Oct 8-10)
- Workshop on nitrogen scenarios for 21st century (Oct 11-12)
- Global coverage, gridded global emission scenarios (0.5 x 0.5 degree), download from web
- Analysis of mitigation potentials of near term forcing
- Projections extended to 2050
- Improving emission calculations for BC, OM; high-emitting vehicles, flaring in oil and gas industry, agricultural and waste open burning
- Extension to include Hg; first GAINS version ready

