

Task Force on Hemispheric Transport of Air Pollution

Assessing the Impacts of the Hemispheric Transport of Air Pollution

Terry Keating

United States EPA

Frank Dentener

European Commission- JRC

Objectives:

 Deliver Policy Relevant Information to the LRTAP Convention, Other Multi-Lateral Forums, and National Governments; EU

In different (sub)continental scale world regions:

- a. What fraction of air pollution concentrations or deposition can be attributed to sources of contemporary anthropogenic emissions within the region as compared to extra-regional, non-anthropogenic, or legacy sources of pollution?
- b. How do these fractions impact on human health, ecosystems and climate change?
- c. How sensitive are regional pollution levels and related impacts to changes in the sources of the various fractions?
- d. How will the various fractions and sensitivities defined above change as a result of expected air pollution abatement efforts or climate change?
- e. How do the availability, costs and impacts of additional emission abatement options compare across different regions?
- 2. Improve Our Scientific Understanding of Air Pollution at the Global to Hemispheric Scale
- 3. Build a Common Understanding by Engaging Experts Inside and Outside the LRTAP Convention

Themes of Cooperative Activities (2012-2016)

Themes of Cooperative Activities (2012-2016)

- Assessment of Health, Ecosystem, and Climate Impacts
 - Improve Methods and Resolution of Impact Assessments
 - 4.1 Assessment of hemispheric scale pollution on human health
 - 4.2 Assessment of hemispheric scale pollution on ecosystems
 - 4.3 Assessment of hemispheric scale pollution on climate
- Assessment of Climate Change Impacts on Pollution
 - 5.1 Analysis of Future Scenario (Climate and Emissions) simulations
 - 5.2 Analysis of related studies on impacts of climate change

Assessment of Health Impacts

HTAP 2010 estimated O₃ and PM effects using relatively coarse global models.

For example, Anenberg et al. (2009) estimated that O_3 resulting from emissions from foreign regions contributes 20% to >50% of O_3 mortalities, subject to large uncertainty.

Hundreds of annual avoided mortalities due to O₃ transport, threshold=35ppb in *italics*

Source Region	Receptor Region				
	NA	EA	SA	EU	NH
NA	9 (4 - 13)	7 (3 - 10)	6 (3 - 9)	11 (5 - 17)	36 (18 - 55)
	9 (4 - 14)	4 (2 - 6)	5 (3 - 8)	6 (3 - 9)	27 (13 - 41)
EA	2 (1 - 3)	43 (21 - 66)	6 (3 - 9)	5 (3 - 8)	59 (29 - 91)
	1 (1 - 2)	40 (19 - 61)	5 (2 - 8)	3 (1 - 4)	49 (24 - 76)
SA	1 (0 - 1)	4 (2 - 6)	76 (37 - 117)	2 (1 - 3)	85 (41 - 130)
	0 (0 - 1)	3 (1 - 4)	66 (32 - 101)	1 (0 - 2)	71 (34 - 108)
EU	2 (1 - 3)	8 (4 - 12)	6 (3 - 10)	17 (8 - 26)	38 (18 - 58)
	1 (0 - 1)	6 (3 - 8)	6 (3 - 9)	25 (12 - 38)	40 (19 - 61)

Relative Intercontinental Response: † † 30%

† 20%

† >50%

5 HTAP; 17.09.2012 Geneva EMEP SB

Assessment of Health Impacts

Global Burden of Disease (GBD) Study

- Developed global and regional rankings of risk factors for disease
- •Air pollution is in the top 10 risk factors in most regions.
- •Used merged model estimates with satellite observations, compared to surface PM_{2.5} and PM₁₀ measurements to estimate outdoor concentrations.
- •Produced updated exposure/response functions (especially for high and low end of PM concentrations).

Estimated Annual Average PM_{2.5} Concentrations

Brauer, et al., 2012

Figure 2. Estimated 2005 annual average $PM_{2.5}$ concentrations ($\mu g/m^3$). The $PM_{2.5}$ estimates are generated from the grid cell average of SAT and TM5 and calibrated with a prediction model incorporating surface measurements.

Assessment of Health Impacts

What can HTAP do as part of current work plan:

- Improve spatial resolution by merging global and regional models:
 - Currently linking to regional modelling activities in North America, Europe, and East Asia
- Provide multiple model estimates
- Attribute impacts to source regions
- Assess impacts associated with past and future scenarios
- Examine the use of surface and satellite observations to supplement model estimates
- Use experience on scale issues from TF MM and translate to global scale.

Assessment of Ecosystem Impacts

HTAP 2010 showed a fairly substantial effect of transport on crop yields ...causing between 5 to 35 % of the O_3 induced crop yield loss.

BUT.... By necessity, assessment used Concentration based indices....

....for future we have the possibility to perform **stomatal ozone flux** based ecosystem assessments in line with adopted LRTAP/WGE methods

Assessment of Ecosystem Impacts

What can be done within HTAP to improve estimates of O_3 dry deposition and estimate stomatal O_3 flux for ecosystem effects?

- 1. Literature review of O₃ dry deposition methods identify those most commonly used within global scale CTMs
- 2. Identification of the key differences in these dry deposition schemes and in parameterizations for different land cover types.
- 3. Off-line assessment of the implications of differences in O₃ dry deposition schemes...comparison with observations from site-specific flux data
- 4. On-line assessment of the effect O_3 dry deposition schemes on hemispheric transport of O_3 ; regional O_3 concentrations and regional O_3 induced ecosystem damage. Global modeling could show spatial fields of stomtal O_3 flux, total O_3 deposition, and effect on atmospheric O_3 concentration.
- 5. HTAP modeling experiments could
 - a. investigate S-R relationship for stomatal O₃ flux,
 - b. alter key climate relevant characteristics (i.e. simulate an extended drought period, elevated CO₂ effects on stomatal conductance, changes in surface ToC and RH% etc...) on resulting stomatal O₃ flux to indicate how ecosystem risk might change under future climates, and
 - c. investigate the role of landcover on O_3 deposition and stomatal O_3 flux.

Assessment of Impacts on Climate

Fry et al. (2012) calculated radiative forcing changes due to emission reductions of NO_x, VOC, CO in HTAP regions and global changes in CH₄ abundance.

$$NO_x \downarrow OH down \downarrow => CH_4 \uparrow$$

 $CO/VOC \downarrow OH \uparrow => CH_4 \downarrow$

 $NO_x > VOC > CO$ opposing signs

Vegetation feedback potentially important (Collins et al. 2010)

Assessment of Impacts on Climate

What can be done within HTAP to improve estimates of climate impacts?

- Changes in Direct Radiative Forcing, with multi-pollutant and vegetation feedbacks (CO₂; isoprene)
- GWP and other climate metric calculations related to pollution emissions In collaboration with climate modelling community, e.g. as in ACCMIP:
- Evaluate climate responses (temperature; hydrologic cycle) due to changes in emissions.

Schedule and Participation

- Evolving 2012-1016 Work Plan divided into 35 Work Packages
- Work package leaders have been recruited and currently working to further specify activities.
- Actively working on historical emissions and future scenarios for analysis.
- Expect new global and regional modeling analyses starting in early 2013.
- How can we work with WGE to help design the impact assessment work that will begin in late 2013 and 2014?

2013 Workshop Proposal

Focus: Impact Assessment Methodologies

(Health, Ecosystems, Climate)

Location: South Asia (propose Pune, India)

Timing: October-November 2013

Potential Partners: WGE, Male Declaration, EANET, ABC-Asia,

UNEP, HEI, GBD

Potential Interest? Potential Conflicts?