STRIVING TOWARD A CIRCULAR ECONOMY FOR PHOSPHORUS:
THE ROLE OF PHOSPHATE ROCK MINING & SUPPLY SECURITY FOR IMPORT-DEPENDENT COUNTRIES

Bernhard Geissler, Gerald Steiner, Ludwig Herman, & Michael Mew

contact: bernhard.geissler@donau-uni.ac.at
TD LAB FOR SUSTAINABLE MINERAL RESOURCES

<table>
<thead>
<tr>
<th>Scientific Co-Lead</th>
<th>Co-Leader Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerald Steiner (Danube University / CSH Vienna)</td>
<td>Michael C. Mew (CRU International)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernhard Geissler (Danube University)</td>
<td>Ludwig Hermann (ESPP and Proman Consulting)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Roland W. Scholz (Danube University / formerly ETH Zürich)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael Obersteiner (IIASA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

- **PART 1: The Extended P Supply Chain**
- **PART 2: Supply Security for Importing Countries**
- **PART 3: Circular Economy of P**
- **PART 4: Best Practice Cases**
PART 1: THE EXTENDED P SUPPLY CHAIN
DYNAMIC NATURE OF RESOURCES

EXTENDED PHOSPHORUS SUPPLY CHAIN (EPSC)

PHASES

- **PRE-MINING**
 - exploration: drill tests, drill core analysis + further exploration methods of:
 - brownfield areas: on mine sites, close to known depots
 - greenfield areas: unexplored territory, explored territory for another commodity

- **MINING**
 - excavation: open-pit (i.e., surface, open-cast) mining
 - draglines, bulldozers, trucks, pit-cars
 - blasting underground mining
 - conventional room mining
 - continuous mining

- **beneficiation**
 - screening: washing, separation, grinding, further treatment
 - flotation, chemical treatment

- **POST-MINING**
 - processing: wet chemical processing to fertilizer
 (with phosphoric acid as major intermediate product)
 - use: agricultural use
 - fertilizer (MAP, DAP, TSP)
 - animal feed
 - non-agricultural use
 - food additives, industrial use

ACTIVITIES

- planning: scheduling, economics, environment, legislative, social

LOSSES, WASTE + OVERLOOKED OPPORTUNITIES

- at reserve, resource or geopotential levels (not considerable as losses)
 - touched (above cut-off grade: economic profit + resource loss) & untouched (below cut-off grade: economic profit + resource loss)
 - possibility of stockpiling for later processing (no loss, besides weathering over time)

INTERMEDIATES

- rock material below cut-off grade (economic profit + resource loss)
 - zero grade waste (no loss)
 - in solid and effluent forms (e.g., clay)

EFFICIENCY

- exploration efficiency
 - URR
 - reserves @ grade
- mining ratio
 - ore @ grade
- beneficiation rate
 - Concentrate @ grade
- secondary recovery rate
 - primarily fertilizers
- use efficiency

quantities

- partly known
- known
- mainly unknown
- partly touched
- mainly untouched

based on Steiner et al. (2015)
DATA RELATED ISSUES

Long term PR production series, by data source

Recent PR production by data source

Geissler et al. (2018a)
PART 2: SUPPLY SECURITY FOR IMPORTING COUNTRIES
PR MARKETS – A GLOBAL PICTURE

Global PR production in 2015

PR deposits by type of origin

Geissler et al. (2018)

Van Kauwenbergh et al. (2013)

Geissler et al. 2019
STRIVING TOWARD A CIRCULAR ECONOMY FOR PHOSPHORUS

GLOBAL DEVELOPMENTS

Geissler et al. 2019

Steiner and Geissler (2016)
CURRENT RESERVE SITUATION

Global phosphate rock reserve-to-production and reserve base-to-production ratios

Country-based phosphate rock reserve-to-production and reserve base-to-production ratios

Geissler et al. (2019b) compiled from USGS data

Geissler et al. 2019
MARKET CONCENTRATIONS 1/3

HHI developments of reserves and reserve-base

Geissler et al. (2019b)
MARKET CONCENTRATIONS 2/3

Geissler et al. (2019b)

Global PR volumes and corresponding HHIs based on BGS/ITC data

- Total Production
- HHI Production
- Total Imports
- HHI Imports
- Total Exports
- HHI Exports

Geissler et al. 2019

STRIVING TOWARD A CIRCULAR ECONOMY FOR PHOSPHORUS
MARKET CONCENTRATIONS 3/3

- **Global PA volumes and corresponding HHIs based on Fertecon/CRU data**
 - Total Production
 - Total Imports
 - Total Exports
 - HHI Production
 - HHI Imports
 - HHI Exports

- **Global DAP volumes and corresponding HHIs (country-based) on Fertecon/CRU data**
 - Total Production DAP
 - Total Imports DAP
 - Total Exports DAP
 - HHI Production DAP
 - HHI Imports DAP
 - HHI Exports DAP

Geissler et al. (2019b)
PART 3: CIRCULAR ECONOMY OF P
MACRO PERSPECTIVE: PHOSPHATE ROCK MINING – INNOVATION – NEXUS

Social
inter- and intragenerational fairness

Improving P2O5 recovery

Sustainable innovation

Waste utilization

Recovery of by-products

Ecological
within global boundaries

Economic
shareholder responsibility

Geissler et al. (2019b)
MICRO PERSPECTIVE: COST STRUCTURE BREAKDOWN 1/2

Global comparison

Weighted average: Igneous vs. Sedimentary

Geissler et al. (2019a) based on CRU data

STRIVING TOWARD A CIRCULAR ECONOMY FOR PHOSPHORUS
MICRO PERSPECTIVE: COST STRUCTURE BREAKDOWN 2/2

Geissler et al. (2019a) based on CRU data
STRIVING TOWARD A CIRCULAR ECONOMY FOR PHOSPHORUS

TOWARD A CIRCULAR ECONOMY

- exploration
- excavation
- beneficiation
- processing
- use
- recycling
- waste utilization of high-volume by-products (e.g., phosphogypsum)
- processing losses
- tailings
- overburden & material
- recovery of by-products e.g.,
 - uranium
 - rare earth elements
- overlooked opportunities
- sustainable mine planning strategies

Agricultural Phosphorus Use Circle

improvement of P_2O_5 recovery
- tailings, overburden, clay, etc.
- (improved) flotation processes
- ...

losses from recovery

policy on recycled fertilizer

Geissler et al. (2018b)

Geissler et al. 2019
PART 4: BEST PRACTICE CASES
JDC’S IMPROVED HARD PROCESS (IHP)

- Low Grade Phosphate Rock
- Petroleum Coke
- Silica Sand

Flowchart showing the process:
1. Drying
2. Grinding
3. Agglomeration
4. Induration Grate-Kiln
5. Ported Kiln
6. Hydrator

Yields:
- J-Rox Commercial Aggregate
- High-Grade Phosphoric Acid

Blake (2017)
STRIVING TOWARD A CIRCULAR ECONOMY FOR PHOSPHORUS: THE ROLE OF PHOSPHATE ROCK MINING

Bernhard Geissler, Gerald Steiner, Ludwig Herman, & Michael Mew

contact: bernhard.geissler@donau-uni.ac.at
REFERENCES

- Wellmer, F.-W., Scholz, R.W., 2017a. Putting Phosphorus First: The Need to Know and Right to Know Call for a Revised Hierarchy of Natural Resources. Resources 6, 20.